Gas In Scattering Media Absorption Spectroscopy
   HOME
*





Gas In Scattering Media Absorption Spectroscopy
Gas in scattering media absorption spectroscopy (GASMAS) is an optical technique for sensing and analysis of gas located within porous and highly scattering solids, e.g. powders, ceramics, wood, fruit, translucent packages, pharmaceutical tablets, foams, human paranasal sinuses etc. It was introduced in 2001 by Prof. Sune Svanberg and co-workers at Lund University (Sweden). The technique is related to conventional high-resolution laser spectroscopy for sensing and spectroscopy of gas (e.g. tunable diode laser absorption spectroscopy, TDLAS), but the fact that the gas here is "hidden" inside solid materials give rise to important differences. Basic Principles Free gases exhibit very sharp spectral features, and different gas species have their own unique spectral fingerprints. At atmospheric pressure, absorption linewidths are typically on the order of 0.1 cm−1 (i.e. ~3 GHz in optical frequency or 0.006 nm in wavelength), while solid media have dull spectral behavi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lund University
, motto = Ad utrumque , mottoeng = Prepared for both , established = , type = Public research university , budget = SEK 9 billion Facts and figures
Lund University web site.
, head_label = , head = Erik Renström , academic_staff = 4,780 (2022) (academic staff, researchers and employed research students) , administrative_staff = 2,890 (2022) , students = 46 000 (29 000 full-time e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tunable Diode Laser Absorption Spectroscopy
Tunable diode laser absorption spectroscopy (TDLAS, sometimes referred to as TDLS, TLS or TLAS) is a technique for measuring the concentration of certain species such as methane, water vapor and many more, in a gaseous mixture using tunable diode lasers and laser absorption spectrometry. The advantage of TDLAS over other techniques for concentration measurement is its ability to achieve very low detection limits (of the order of ppb). Apart from concentration, it is also possible to determine the temperature, pressure, velocity and mass flux of the gas under observation. TDLAS is by far the most common laser based absorption technique for quantitative assessments of species in gas phase. Working A basic TDLAS setup consists of a tunable diode laser light source, transmitting (i.e. beam shaping) optics, optically accessible absorbing medium, receiving optics and detector/s. The emission wavelength of the tunable diode laser, viz. VCSEL, DFB, etc., is tuned over the characteristic ab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]