Free Energy Principle
   HOME
*



picture info

Free Energy Principle
The free energy principle is a mathematical principle in biophysics and cognitive science that provides a formal account of the representational capacities of physical systems: that is, why things that exist look as if they track properties of the systems to which they are coupled. It establishes that the dynamics of physical systems minimise a quantity known as surprisal (which is just the negative log probability of some outcome); or equivalently, its variational upper bound, called free energy. The principle is formally related to variational Bayesian methods and was originally introduced by Karl Friston as an explanation for embodied perception-action loops in neuroscience, where it is also known as active inference. The free energy principle models the behaviour of systems that are distinct from, but coupled to, another system (e.g., an embedding environment), where the degrees of freedom that implement the interface between the two systems is known as a Markov blanket. More ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Markov Blanket
In statistics and machine learning, when one wants to infer a random variable with a set of variables, usually a subset is enough, and other variables are useless. Such a subset that contains all the useful information is called a Markov blanket. If a Markov blanket is minimal, meaning that it cannot drop any variable without losing information, it is called a Markov boundary. Identifying a Markov blanket or a Markov boundary helps to extract useful features. The terms of Markov blanket and Markov boundary were coined by Judea Pearl in 1988. Markov blanket A Markov blanket of a random variable Y in a random variable set \mathcal=\ is any subset \mathcal_1 of \mathcal, conditioned on which other variables are independent with Y: :Y\perp \!\!\! \perp\mathcal\backslash\mathcal_1 \mid \mathcal_1. It means that \mathcal_1 contains at least all the information one needs to infer Y, where the variables in \mathcal\backslash\mathcal_1 are redundant. In general, a given Markov blank ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE