Formally étale Morphism
   HOME
*





Formally étale Morphism
In commutative algebra and algebraic geometry, a morphism is called formally étale if it has a lifting property that is analogous to being a local diffeomorphism. Formally étale homomorphisms of rings Let ''A'' be a topological ring, and let ''B'' be a topological ''A''-algebra. Then ''B'' is formally étale if for all discrete ''A''-algebras ''C'', all nilpotent ideals ''J'' of ''C'', and all continuous ''A''-homomorphisms , there exists a unique continuous ''A''-algebra map such that , where is the canonical projection. Formally étale is equivalent to formally smooth plus formally unramified. Formally étale morphisms of schemes Since the structure sheaf of a scheme naturally carries only the discrete topology, the notion of formally étale for schemes is analogous to formally étale for the discrete topology for rings. That is, a morphism of schemes is formally étale if for every affine ''Y''-scheme ''Z'', every nilpotent sheaf of ideals ''J'' on ''Z'' with be the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and ''p''-adic integers. Commutative algebra is the main technical tool in the local study of schemes. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. In algebraic number theory, the rings of algebraic integers are Dedekind rings, which constitute therefore an important class of commutative rings. Considerations related to modular arithmetic have led to the no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formally Smooth
In algebraic geometry, a morphism f:X \to S between schemes is said to be smooth if *(i) it is locally of finite presentation *(ii) it is flat, and *(iii) for every geometric point \overline \to S the fiber X_ = X \times_S is regular. (iii) means that each geometric fiber of ''f'' is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If ''S'' is the spectrum of an algebraically closed field and ''f'' is of finite type, then one recovers the definition of a nonsingular variety. Equivalent definitions There are many equivalent definitions of a smooth morphism. Let f: X \to S be locally of finite presentation. Then the following are equivalent. # ''f'' is smooth. # ''f'' is formally smooth (see below). # ''f'' is flat and the sheaf of relative differentials \Omega_ is locally free of rank equal to the relative dimension of X/S. # For any x \in X, there exists a neighborhood \operatornameB of x and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formally Unramified
In algebraic geometry, a morphism f:X \to S between schemes is said to be smooth if *(i) it is locally of finite presentation *(ii) it is flat, and *(iii) for every geometric point \overline \to S the fiber X_ = X \times_S is regular. (iii) means that each geometric fiber of ''f'' is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If ''S'' is the spectrum of an algebraically closed field and ''f'' is of finite type, then one recovers the definition of a nonsingular variety. Equivalent definitions There are many equivalent definitions of a smooth morphism. Let f: X \to S be locally of finite presentation. Then the following are equivalent. # ''f'' is smooth. # ''f'' is formally smooth (see below). # ''f'' is flat and the sheaf of relative differentials \Omega_ is locally free of rank equal to the relative dimension of X/S. # For any x \in X, there exists a neighborhood \operatornameB of x and a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Separable Algebra
In mathematics, a separable algebra is a kind of semisimple algebra. It is a generalization to associative algebras of the notion of a separable field extension. Definition and First Properties A ring homomorphism (of unital, but not necessarily commutative rings) :K \to A is called ''separable'' (or a ''separable extension'') if the multiplication map :\mu : A \otimes_K A \to A, a \otimes b \mapsto ab admits a section :\sigma: A \to A \otimes_K A by means of a homomorphism σ of ''A''-''A''-bimodules. Such a section σ is determined by its value :p := \sigma(1) = \sum a_i \otimes b_i σ(1). The condition that σ is a section of μ is equivalent to :\sum a_i b_i = 1 and the condition to be an homomorphism of ''A''-''A''-bimodules is equivalent to the following requirement for any ''a'' in ''A'': :\sum a a_i \otimes b_i = \sum a_i \otimes b_i a. Such an element ''p'' is called a ''separability idempotent'', since it satisfies p^2 = p. Examples Fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flat Module
In algebra, a flat module over a ring ''R'' is an ''R''-module ''M'' such that taking the tensor product over ''R'' with ''M'' preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact. Flatness was introduced by in his paper '' Géometrie Algébrique et Géométrie Analytique''. See also flat morphism. Definition A module over a ring is ''flat'' if the following condition is satisfied: for every injective linear map \varphi: K \to L of -modules, the map :\varphi \otimes_R M: K \otimes_R M \to L \otimes_R M is also injective, where \varphi \otimes_R M is the map induced by k \otimes m \mapsto \varphi(k) \otimes m. For this definition, it is enough to restrict the injections \varphi to the inclusions of finitely generated ideals into . Equivalently, an -module is flat if the tensor product with is an exact functor; that is if, for every short exact sequence of - ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Localization Of A Ring
In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module ''R'', so that it consists of fractions \frac, such that the denominator ''s'' belongs to a given subset ''S'' of ''R''. If ''S'' is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field \Q of rational numbers from the ring \Z of integers. The technique has become fundamental, particularly in algebraic geometry, as it provides a natural link to sheaf theory. In fact, the term ''localization'' originated in algebraic geometry: if ''R'' is a ring of functions defined on some geometric object (algebraic variety) ''V'', and one wants to study this variety "locally" near a point ''p'', then one considers the set ''S'' of all functions that are not zero at ''p'' and localizes ''R'' wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fibered Product
In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit of a diagram consisting of two morphisms and with a common codomain. The pullback is often written : and comes equipped with two natural morphisms and . The pullback of two morphisms and need not exist, but if it does, it is essentially uniquely defined by the two morphisms. In many situations, may intuitively be thought of as consisting of pairs of elements with in , in , and . For the general definition, a universal property is used, which essentially expresses the fact that the pullback is the "most general" way to complete the two given morphisms to a commutative square. The dual concept of the pullback is the ''pushout''. Universal property Explicitly, a pullback of the morphisms and consists of an object and two morphisms and for which the diagram : commutes. Moreover, the pullback must be universal wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Open Immersion
Open or OPEN may refer to: Music * Open (band), Australian pop/rock band * The Open (band), English indie rock band * ''Open'' (Blues Image album), 1969 * ''Open'' (Gotthard album), 1999 * ''Open'' (Cowboy Junkies album), 2001 * ''Open'' (YFriday album), 2001 * ''Open'' (Shaznay Lewis album), 2004 * ''Open'' (Jon Anderson EP), 2011 * ''Open'' (Stick Men album), 2012 * ''Open'' (The Necks album), 2013 * ''Open'', a 1967 album by Julie Driscoll, Brian Auger and the Trinity * ''Open'', a 1979 album by Steve Hillage * "Open" (Queensrÿche song) * "Open" (Mýa song) * "Open", the first song on The Cure album ''Wish'' Literature * ''Open'' (Mexican magazine), a lifestyle Mexican publication * ''Open'' (Indian magazine), an Indian weekly English language magazine featuring current affairs * ''OPEN'' (North Dakota magazine), an out-of-print magazine that was printed in the Fargo, North Dakota area of the U.S. * Open: An Autobiography, Andre Agassi's 2009 memoir Computin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scheme (mathematics)
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations ''x'' = 0 and ''x''2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Formally, a scheme is a topological space together with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Structure Sheaf
In mathematics, a ringed space is a family of (commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf of rings called a structure sheaf. It is an abstraction of the concept of the rings of continuous (scalar-valued) functions on open subsets. Among ringed spaces, especially important and prominent is a locally ringed space: a ringed space in which the analogy between the stalk at a point and the ring of germs of functions at a point is valid. Ringed spaces appear in analysis as well as complex algebraic geometry and the scheme theory of algebraic geometry. Note: In the definition of a ringed space, most expositions tend to restrict the rings to be commutative rings, including Hartshorne and Wikipedia. "Éléments de géométrie algébrique", on the other hand, does not impose the commutativity assumption, although the book mostly considers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]