Final Stellation Of The Icosahedron
   HOME
*



picture info

Final Stellation Of The Icosahedron
In geometry, the complete or final stellation of the icosahedron is the outermost stellation of the icosahedron, and is "complete" and "final" because it includes all of the cells in the icosahedron's stellation diagram. That is, every three intersecting face planes of the icosahedral core intersect either on a vertex of this polyhedron, or inside of it. This polyhedron is the seventeenth stellation of the icosahedron, and given as Wenninger model index 42. As a geometrical figure, it has two interpretations, described below: * As an irregular star (self-intersecting) polyhedron with 20 identical self-intersecting enneagrammic faces, 90 edges, 60 vertices. * As a simple polyhedron with 180 triangular faces (60 isosceles, 120 scalene), 270 edges, and 92 vertices. This interpretation is useful for polyhedron model building. Johannes Kepler researched stellations that create regular star polyhedra (the Kepler-Poinsot polyhedra) in 1619, but the complete icosahedron, with irreg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complete Icosahedron Ortho Stella
Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies that there are no "holes" in the real numbers * Complete metric space, a metric space in which every Cauchy sequence converges * Complete uniform space, a uniform space where every Cauchy net in converges (or equivalently every Cauchy filter converges) * Complete measure, a measure space where every subset of every null set is measurable * Completion (algebra), at an ideal * Completeness (cryptography) * Completeness (statistics), a statistic that does not allow an unbiased estimator of zero * Complete graph, an undirected graph in which every pair of vertices has exactly one edge connecting them * Complete category, a category ''C'' where every diagram from a small category to ''C'' has a limit; it is ''cocomplete'' if every such functor ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Truncated Icosahedron
In geometry, the truncated icosahedron is an Archimedean solid, one of 13 convex isogonal nonprismatic solids whose 32 faces are two or more types of regular polygons. It is the only one of these shapes that does not contain triangles or squares. In general usage, the degree of truncation is assumed to be uniform unless specified. It has 12 regular pentagonal faces, 20 regular hexagonal faces, 60 vertices and 90 edges. It is the Goldberg polyhedron GPV(1,1) or 1,1, containing pentagonal and hexagonal faces. This geometry is associated with footballs (soccer balls) typically patterned with white hexagons and black pentagons. Geodesic domes such as those whose architecture Buckminster Fuller pioneered are often based on this structure. It also corresponds to the geometry of the fullerene C60 ("buckyball") molecule. It is used in the cell-transitive hyperbolic space-filling tessellation, the bitruncated order-5 dodecahedral honeycomb. Construction This polyhedron can be const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Johannes Kepler
Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws of planetary motion, and his books ''Astronomia nova'', ''Harmonice Mundi'', and ''Epitome Astronomiae Copernicanae''. These works also provided one of the foundations for Newton's theory of universal gravitation. Kepler was a mathematics teacher at a seminary school in Graz, where he became an associate of Prince Hans Ulrich von Eggenberg. Later he became an assistant to the astronomer Tycho Brahe in Prague, and eventually the imperial mathematician to Emperor Rudolf II and his two successors Matthias and Ferdinand II. He also taught mathematics in Linz, and was an adviser to General Wallenstein. Additionally, he did fundamental work in the field of optics, invented an improved version of the refracting (or Keplerian) telescope, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyhedron Model
A polyhedron model is a physical construction of a polyhedron, constructed from cardboard, plastic board, wood board or other panel material, or, less commonly, solid material. Since there are 75 uniform polyhedra, including the five regular convex polyhedra, five polyhedral compounds, four Kepler-Poinsot polyhedra, and thirteen Archimedean solids, constructing or collecting polyhedron models has become a common mathematical recreation. Polyhedron models are found in mathematics classrooms much as globes in geography classrooms. Polyhedron models are notable as three-dimensional proof-of-concepts of geometric theories. Some polyhedra also make great centerpieces, tree toppers, Holiday decorations, or symbols. The Merkaba religious symbol, for example, is a stellated octahedron. Constructing large models offer challenges in engineering structural design. Construction Construction begins by choosing a ''size'' of the model, either the ''length'' of its edges or the ''heigh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


As A Simple Polyhedron
As, AS, A. S., A/S or similar may refer to: Art, entertainment, and media * A. S. Byatt (born 1936), English critic, novelist, poet and short story writer * "As" (song), by Stevie Wonder * , a Spanish sports newspaper * , an academic male voice choir of Helsinki, Finland * Adult Swim, a programming block on Cartoon Network Business legal structures * , a Czech form of joint-stock company * , a Slovak form of joint-stock company * or ''A/S'', a type of Danish stock-based company * or ''AS'', a type of Norwegian stock-based company Businesses and organizations * A.S. Roma, an Italian football club * Alaska Airlines, IATA airline designator * (Belgium), a World War II resistance organization * ''Diario AS'', a Spanish daily sports newspaper that concentrates particularly on football - branded as AS * KK AS Basket, a Serbian basketball club * , a French resistance organization * Oakland Athletics, an American baseball team referred to as the A's * Australian Standards, a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Enneagram (geometry)
In geometry, an enneagram (🟙 U+1F7D9) is a nine-pointed plane figure. It is sometimes called a nonagram, nonangle, or enneagon. The word 'enneagram' combines the numeral prefix ''ennea-'' with the Greek suffix '' -gram''. The ''gram'' suffix derives from ''γραμμῆς'' (''grammēs'') meaning a line. Regular enneagram A regular enneagram is a 9-sided star polygon. It is constructed using the same points as the regular enneagon, but the points are connected in fixed steps. Two forms of regular enneagram exist: *One form connects every second point and is represented by the Schläfli symbol . *The other form connects every fourth point and is represented by the Schläfli symbol . There is also a star figure, or 3, made from the regular enneagon points but connected as a compound of three equilateral triangles. (If the triangles are alternately interlaced, this results in a Brunnian link.) This star figure is sometimes known as the ''star of Goliath'', after or 2, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


As A Star Polyhedron
As, AS, A. S., A/S or similar may refer to: Art, entertainment, and media * A. S. Byatt (born 1936), English critic, novelist, poet and short story writer * "As" (song), by Stevie Wonder * , a Spanish sports newspaper * , an academic male voice choir of Helsinki, Finland * Adult Swim, a programming block on Cartoon Network Business legal structures * , a Czech form of joint-stock company * , a Slovak form of joint-stock company * or ''A/S'', a type of Danish stock-based company * or ''AS'', a type of Norwegian stock-based company Businesses and organizations * A.S. Roma, an Italian football club * Alaska Airlines, IATA airline designator * (Belgium), a World War II resistance organization * ''Diario AS'', a Spanish daily sports newspaper that concentrates particularly on football - branded as AS * KK AS Basket, a Serbian basketball club * , a French resistance organization * Oakland Athletics, an American baseball team referred to as the A's * Australian Standards, a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regular Polyhedron
A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex. A regular polyhedron is identified by its Schläfli symbol of the form , where ''n'' is the number of sides of each face and ''m'' the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In addition, there are five regular compounds of the regular polyhedra. The regular polyhedra There are five convex regular polyhedra, known as the Platonic solids, four regular star polyhedra, the Kepler–Poinsot polyhedra, and five regular compounds ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Wenninger Polyhedron Models
This is an indexed list of the uniform and stellated polyhedra from the book ''Polyhedron Models'', by Magnus Wenninger. The book was written as a guide book to building polyhedra as physical models. It includes templates of face elements for construction and helpful hints in building, and also brief descriptions on the theory behind these shapes. It contains the 75 nonprismatic Uniform polyhedron, uniform polyhedra, as well as 44 Stellation, stellated forms of the convex regular and quasiregular polyhedra. Models listed here can be cited as "Wenninger Model Number ''N''", or ''W''''N'' for brevity. The polyhedra are grouped in 5 tables: Regular (1–5), Semiregular (6–18), regular star polyhedra (20–22,41), Stellations and compounds (19–66), and uniform star polyhedra (67–119). ''The four regular star polyhedra are listed twice because they belong to both the uniform polyhedra and stellation groupings.'' Platonic solids (regular convex polyhedra) W1 to W5 Archimedean ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyhedron
In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on the same plane. Cubes and pyramids are examples of convex polyhedra. A polyhedron is a 3-dimensional example of a polytope, a more general concept in any number of dimensions. Definition Convex polyhedra are well-defined, with several equivalent standard definitions. However, the formal mathematical definition of polyhedra that are not required to be convex has been problematic. Many definitions of "polyhedron" have been given within particular contexts,. some more rigorous than others, and there is not universal agreement over which of these to choose. Some of these definitions exclude shapes that have often been counted as polyhedra (such as the self-crossing polyhedra) or include shapes that are often not considered as valid polyhedr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stellation Diagram
In geometry, a stellation diagram or stellation pattern is a two-dimensional diagram in the plane of some face of a polyhedron, showing lines where other face planes intersect with this one. The lines cause 2D space to be divided up into regions. Regions not intersected by any further lines are called elementary regions. Usually unbounded regions are excluded from the diagram, along with any portions of the lines extending to infinity. Each elementary region represents a top face of one cell, and a bottom face of another. A collection of these diagrams, one for each face type, can be used to represent any stellation of the polyhedron, by shading the regions which should appear in that stellation. A stellation diagram exists for every face of a given polyhedron. In face transitive polyhedra, symmetry can be used to require all faces have the same diagram shading. Semiregular polyhedra like the Archimedean solids will have different stellation diagrams for different kinds of faces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]