Filtered Category
   HOME
*





Filtered Category
In category theory, filtered categories generalize the notion of directed set understood as a category (hence called a directed category; while some use directed category as a synonym for a filtered category). There is a dual notion of cofiltered category, which will be recalled below. Filtered categories A category J is filtered when * it is not empty, * for every two objects j and j' in J there exists an object k and two arrows f:j\to k and f':j'\to k in J, * for every two parallel arrows u,v:i\to j in J, there exists an object k and an arrow w:j\to k such that wu=wv. A filtered colimit is a colimit of a functor F:J\to C where J is a filtered category. Cofiltered categories A category J is cofiltered if the opposite category J^ is filtered. In detail, a category is cofiltered when * it is not empty, * for every two objects j and j' in J there exists an object k and two arrows f:k\to j and f':k \to j' in J, * for every two parallel arrows u,v:j\to i in J, there exists an obj ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Cardinal
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that \kappa is a regular cardinal if and only if every unbounded subset C \subseteq \kappa has cardinality \kappa. Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular. In the presence of the axiom of choice, any cardinal number can be well-ordered, and then the following are equivalent for a cardinal \kappa: # \kappa is a regular cardinal. # If \kappa = \sum_ \lambda_i and \lambda_i < \kappa for all i, then , I, \ge \kappa. # If S = \bigcup_ S_i, and if , I, < \kappa and , S_i, < \kappa for all i, then , S, < \kappa. # The

Categories For The Working Mathematician
''Categories for the Working Mathematician'' (''CWM'') is a textbook in category theory written by American mathematician Saunders Mac Lane, who cofounded the subject together with Samuel Eilenberg. It was first published in 1971, and is based on his lectures on the subject given at the University of Chicago, the Australian National University, Bowdoin College, and Tulane University. It is widely regarded as the premier introduction to the subject. Contents The book has twelve chapters, which are: :Chapter I. Categories, Functors, and Natural Transformations. :Chapter II. Constructions on Categories. :Chapter III. Universals and Limits. :Chapter IV. Adjoints. :Chapter V. Limits. :Chapter VI. Monads and Algebras. :Chapter VII. Monoids. :Chapter VIII. Abelian Categories. :Chapter IX. Special Limits. :Chapter X. Kan Extensions. :Chapter XI. Symmetry and Braiding in Monoidal Categories :Chapter XII. Structures in Categories. Chapters XI and XII were added in the 1998 second edi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Séminaire De Géométrie Algébrique Du Bois Marie
In mathematics, the ''Séminaire de Géométrie Algébrique du Bois Marie'' (''SGA'') was an influential seminar run by Alexander Grothendieck. It was a unique phenomenon of research and publication outside of the main mathematical journals that ran from 1960 to 1969 at the IHÉS near Paris. (The name came from the small wood on the estate in Bures-sur-Yvette where the IHÉS was located from 1962.) The seminar notes were eventually published in twelve volumes, all except one in the Springer Lecture Notes in Mathematics series. Style The material has a reputation of being hard to read for a number of reasons. More elementary or foundational parts were relegated to the EGA series of Grothendieck and Jean Dieudonné, causing long strings of logical dependencies in the statements. The style is very abstract and makes heavy use of category theory. Moreover, an attempt was made to achieve maximally general statements, while assuming that the reader is aware of the motivations and conc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jean-Louis Verdier
Jean-Louis Verdier (; 2 February 1935 – 25 August 1989) was a French mathematician who worked, under the guidance of his doctoral advisor Alexander Grothendieck, on derived categories and Verdier duality. He was a close collaborator of Grothendieck, notably contributing to SGA 4 his theory of hypercovers and anticipating the later development of étale homotopy by Michael Artin and Barry Mazur, following a suggestion he attributed to Pierre Cartier. Saul Lubkin's related theory of rigid hypercovers was later taken up by Eric Friedlander in his definition of the étale topological type. Verdier was a student at the elite École Normale Supérieure in Paris, and later became director of studies there, as well as a Professor at the University of Paris VII. For many years he directed a joint seminar at the École Normale Supérieure with Adrien Douady. Verdier was a member of Bourbaki. In 1984 he was the president of the Société Mathématique de France. In 1976 Verdier d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michael Artin
Michael Artin (; born 28 June 1934) is a German-American mathematician and a professor emeritus in the Massachusetts Institute of Technology mathematics department, known for his contributions to algebraic geometry.Faculty profile
, MIT mathematics department, retrieved 2011-01-03


Life and career

Michael Artin or Artinian was born in , Germany, and brought up in . His parents were Natalia Naumovna Jasny (Natascha) and
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diagram (category Theory)
In category theory, a branch of mathematics, a diagram is the categorical analogue of an indexed family in set theory. The primary difference is that in the categorical setting one has morphisms that also need indexing. An indexed family of sets is a collection of sets, indexed by a fixed set; equivalently, a ''function'' from a fixed index ''set'' to the class of ''sets''. A diagram is a collection of objects and morphisms, indexed by a fixed category; equivalently, a ''functor'' from a fixed index ''category'' to some ''category''. The universal functor of a diagram is the diagonal functor; its right adjoint is the limit of the diagram and its left adjoint is the colimit. The natural transformation from the diagonal functor to some arbitrary diagram is called a cone. Definition Formally, a diagram of type ''J'' in a category ''C'' is a ( covariant) functor The category ''J'' is called the index category or the scheme of the diagram ''D''; the functor is sometimes called a ''J' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cone (category Theory)
In category theory, a branch of mathematics, the cone of a functor is an abstract notion used to define the limit of that functor. Cones make other appearances in category theory as well. Definition Let ''F'' : ''J'' → ''C'' be a diagram in ''C''. Formally, a diagram is nothing more than a functor from ''J'' to ''C''. The change in terminology reflects the fact that we think of ''F'' as indexing a family of objects and morphisms in ''C''. The category ''J'' is thought of as an "index category". One should consider this in analogy with the concept of an indexed family of objects in set theory. The primary difference is that here we have morphisms as well. Thus, for example, when ''J'' is a discrete category, it corresponds most closely to the idea of an indexed family in set theory. Another common and more interesting example takes ''J'' to be a span. ''J'' can also be taken to be the empty category, leading to the simplest cones. Let ''N'' be an object of ''C''. A cone fro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Directed Set
In mathematics, a directed set (or a directed preorder or a filtered set) is a nonempty set A together with a reflexive and transitive binary relation \,\leq\, (that is, a preorder), with the additional property that every pair of elements has an upper bound. In other words, for any a and b in A there must exist c in A with a \leq c and b \leq c. A directed set's preorder is called a . The notion defined above is sometimes called an . A is defined analogously, meaning that every pair of elements is bounded below. Some authors (and this article) assume that a directed set is directed upward, unless otherwise stated. Other authors call a set directed if and only if it is directed both upward and downward. Directed sets are a generalization of nonempty totally ordered sets. That is, all totally ordered sets are directed sets (contrast ordered sets, which need not be directed). Join-semilattices (which are partially ordered sets) are directed sets as well, but not conversely. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Presheaf (category Theory)
In category theory, a branch of mathematics, a presheaf on a category C is a functor F\colon C^\mathrm\to\mathbf. If C is the poset of open sets in a topological space, interpreted as a category, then one recovers the usual notion of presheaf on a topological space. A morphism of presheaves is defined to be a natural transformation of functors. This makes the collection of all presheaves on C into a category, and is an example of a functor category. It is often written as \widehat = \mathbf^. A functor into \widehat is sometimes called a profunctor. A presheaf that is naturally isomorphic to the contravariant hom-functor Hom(–, ''A'') for some object ''A'' of C is called a representable presheaf. Some authors refer to a functor F\colon C^\mathrm\to\mathbf as a \mathbf-valued presheaf. Examples * A simplicial set is a Set-valued presheaf on the simplex category C=\Delta. Properties * When C is a small category, the functor category \widehat=\mathbf^ is cartesian closed. * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Small Category
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. ''Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]