HOME





Forbidden Graph Characterization
In graph theory, a branch of mathematics, many important families of Graph (discrete mathematics), graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) Glossary_of_graph_theory#subgraph, subgraph or Graph minor, minor. A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar graph, planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph and the complete bipartite graph . For Kuratowski's theorem, the notion of containment is that of graph homeomorphism, in which a subdivision of one graph appears as a subgraph of the other. Thus, every graph either has a planar drawing (in which case it belongs to the family of planar graphs) or it has a subdivision of at least one of these two graphs as a subgraph (in which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Age Restrictions
Age restrictions are laws, rules or recommendations which detail the given age a person must be in order to access something. Age limits often apply to minors, people under the age of majority, or older adults. List *Age of candidacy *Age of consent *Age requirements in gymnastics *Age segregation *Defense of infancy *Legal drinking age *Legal smoking age *Legal working age *List of countries by minimum driving age *Mandatory retirement *Marriageable age *Military use of children *Retirement age This article lists the statutory retirement age in different countries. In some contexts, the retirement age is the age at which a person is expected or required to cease work. It is usually the age at which such a person may be entitled to recei ... *Voting age See also

*Ageism *Age of majority *Content rating *Legal status of tattooing in European countries *Legal status of tattooing in the United States *Not safe for work, NSFW {{DEFAULTSORT:Age restrictions Age and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homeomorphism (graph Theory)
In graph theory, two graph (discrete mathematics), graphs G and G' are homeomorphic if there is a graph isomorphism from some #Subdivision_and_smoothing, subdivision of G to some subdivision of G'. If the edges of a graph are thought of as lines drawn from one vertex (graph theory), vertex to another (as they are usually depicted in diagrams), then two graphs are homeomorphic to each other in the graph-theoretic sense precisely if their diagrams are homeomorphism, homeomorphic in the topology, topological sense. Subdivision and smoothing In general, a subdivision of a graph ''G'' (sometimes known as an expansion) is a graph resulting from the subdivision of edges in ''G''. The subdivision of some edge ''e'' with endpoints yields a graph containing one new vertex ''w'', and with an edge set replacing ''e'' by two new edges, and . For directed edges, this operation shall preserve their propagating direction. For example, the edge ''e'', with endpoints : can be subdivided int ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle-free Graph
In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally independent graphs. By Turán's theorem, the ''n''-vertex triangle-free graph with the maximum number of edges is a complete bipartite graph in which the numbers of vertices on each side of the bipartition are as equal as possible. Triangle finding problem The triangle finding or triangle detection problem is the problem of determining whether a graph is triangle-free or not. When the graph does contain a triangle, algorithms are often required to output three vertices which form a triangle in the graph. It is possible to test whether a graph with m edges is triangle-free in time \tilde O\bigl(m^\bigr) where the \tilde O hides sub-polynomial factors. Here \omega is t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Comparability Graph
In graph theory and order theory, a comparability graph is an undirected graph that connects pairs of elements that are comparable to each other in a partial order. Comparability graphs have also been called transitively orientable graphs, partially orderable graphs, containment graphs, and divisor graphs. An incomparability graph is an undirected graph that connects pairs of elements that are not comparable to each other in a partial order. Definitions and characterization For any strict partially ordered set , the comparability graph of is the graph of which the vertices are the elements of and the edges are those pairs of elements such that . That is, for a partially ordered set, take the directed acyclic graph In mathematics, particularly graph theory, and computer science, a directed acyclic graph (DAG) is a directed graph with no directed cycles. That is, it consists of vertices and edges (also called ''arcs''), with each edge directed from one ..., apply t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Claw-free Graph
In graph theory, an area of mathematics, a claw-free graph is a graph that does not have a claw (graph theory), claw as an induced subgraph. A claw is another name for the complete bipartite graph K_ (that is, a star graph comprising three edges, three leaves, and a central vertex). A claw-free graph is a graph in which no induced subgraph is a claw; i.e., any subset of four vertices has other than only three edges connecting them in this pattern. Equivalently, a claw-free graph is a graph in which the neighborhood (graph theory), neighborhood of any vertex (graph theory), vertex is the complement (graph theory), complement of a triangle-free graph. Claw-free graphs were initially studied as a generalization of line graphs, and gained additional motivation through three key discoveries about them: the fact that all claw-free connected graphs of even order have perfect matchings, the discovery of polynomial time algorithms for finding maximum independent sets in claw-free graphs, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Star (graph Theory)
In graph theory, a star is the complete bipartite graph a tree (graph theory), tree with one internal node and leaves (but no internal nodes and leaves when ). Alternatively, some authors define to be the tree of order (graph theory), order with maximum diameter (graph theory), diameter 2; in which case a star of has leaves. A star with 3 edges is called a claw. The star is Edge-graceful labeling, edge-graceful when is even and not when is odd. It is an edge-transitive matchstick graph, and has diameter 2 (when ), Girth (graph theory), girth ∞ (it has no cycles), chromatic index , and chromatic number 2 (when ). Additionally, the star has large automorphism group, namely, the symmetric group on letters. Stars may also be described as the only connected graphs in which at most one vertex has degree (graph theory), degree greater than one. Relation to other graph families Claws are notable in the definition of claw-free graphs, graphs that do not have any claw as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Forest
In graph theory, a branch of mathematics, a linear forest is a kind of forest where each component is a path graph, or a disjoint union of nontrivial paths. Equivalently, it is an acyclic and claw-free graph. An acyclic graph where every vertex has degree 0, 1, or 2 is a linear forest. An undirected graph has Colin de Verdière graph invariant at most 1 if and only if it is a (node-)disjoint union of paths, i.e. it is linear. Any linear forest is a subgraph of the path graph with the same number of vertices. Extensions to the notation According to Habib and Peroche, a ''k''-linear forest consists of paths of ''k'' or fewer nodes each. According to Burr and Roberts, an (''n'', ''j'')-linear forest has ''n'' vertices and ''j'' of its component paths have an odd number of vertices. According to Faudree et al., a (''k'', ''t'')-linear or (''k'', ''t'', ''s'')-linear forest has ''k'' edges, and ''t'' components of which ''s'' are single vertices; ''s'' is omitted if its value i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cycle (graph Theory)
In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal. A graph without cycles is called an ''acyclic graph''. A directed graph without directed cycles is called a '' directed acyclic graph''. A connected graph without cycles is called a ''tree''. Definitions Circuit and cycle * A circuit is a non-empty trail in which the first and last vertices are equal (''closed trail''). : Let be a graph. A circuit is a non-empty trail with a vertex sequence . * A cycle or simple circuit is a circuit in which only the first and last vertices are equal. * ''n'' is called the length of the circuit resp. length of the cycle. Directed circuit and directed cycle * A directed circuit is a non-empty directed trail in which the first and last vertices are equal (''closed directed trail''). : Let be a directed grap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Forest (graph Theory)
In graph theory, a tree is an undirected graph in which any two vertices are connected by path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. A directed tree, oriented tree,See .See . polytree,See . or singly connected networkSee . is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest. The various kinds of data structures referred to as trees in computer science have underlying graphs that are trees in graph theory, although such data structures are generally rooted trees. A rooted tree may be directed, called a directed rooted tree, either making all its edges point away from the root—in which case it is called an arborescence or out-tree—or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Robertson–Seymour Theorem
In graph theory, the Robertson–Seymour theorem (also called the graph minors theorem) states that the undirected graphs, partially ordered by the graph minor relationship, form a well-quasi-ordering. Equivalently, every family of graphs that is closed under taking minors can be defined by a finite set of forbidden minors, in the same way that Wagner's theorem characterizes the planar graphs as being the graphs that do not have the complete graph K_5 or the complete bipartite graph K_ as minors. The Robertson–Seymour theorem is named after mathematicians Neil Robertson and Paul D. Seymour, who proved it in a series of twenty papers spanning over 500 pages from 1983 to 2004. Before its proof, the statement of the theorem was known as Wagner's conjecture after the German mathematician Klaus Wagner, although Wagner said he never conjectured it. A weaker result for trees is implied by Kruskal's tree theorem, which was conjectured in 1937 by Andrew Vázsonyi and proved in 19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial Time
In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is gener ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use Conditional (computer programming), conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning). In contrast, a Heuristic (computer science), heuristic is an approach to solving problems without well-defined correct or optimal results.David A. Grossman, Ophir Frieder, ''Information Retrieval: Algorithms and Heuristics'', 2nd edition, 2004, For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation. As an e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]