Fermion Doubling Problem
   HOME



picture info

Fermion Doubling Problem
In lattice field theory, fermion doubling occurs when naively putting fermionic fields on a lattice, resulting in more fermionic states than expected. For the naively discretized Dirac fermions in d Euclidean dimensions, each fermionic field results in 2^d identical fermion species, referred to as different tastes of the fermion. The fermion doubling problem is intractably linked to chiral invariance by the Nielsen–Ninomiya theorem. Most strategies used to solve the problem require using modified fermions which reduce to the Dirac fermion only in the continuum limit. Naive fermion discretization For simplicity we will consider a four-dimensional theory of a free fermion, although the fermion doubling problem remains in arbitrary dimensions and even if interactions are included. Lattice field theory is usually carried out in Euclidean spacetime arrived at from Minkowski spacetime after a Wick rotation, where the continuum Dirac action takes the form : S_F psi, \bar \psi= ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice Field Theory
In physics, lattice field theory is the study of lattice models of quantum field theory. This involves studying field theory on a space or spacetime that has been discretised onto a lattice. Details Although most lattice field theories are not exactly solvable, they are immensely appealing due to their feasibility for computer simulation, often using Markov chain Monte Carlo methods. One hopes that, by performing simulations on larger and larger lattices, while making the lattice spacing smaller and smaller, one will be able to recover the behavior of the continuum theory as the continuum limit is approached. Just as in all lattice models, numerical simulation provides access to field configurations that are not accessible to perturbation theory, such as solitons. Similarly, non-trivial vacuum states can be identified and examined. The method is particularly appealing for the quantization of a gauge theory using the Wilson action. Most quantization approaches maintain Po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Difference
A finite difference is a mathematical expression of the form . Finite differences (or the associated difference quotients) are often used as approximations of derivatives, such as in numerical differentiation. The difference operator, commonly denoted \Delta, is the operator (mathematics), operator that maps a function to the function \Delta[f] defined by \Delta[f](x) = f(x+1)-f(x). A difference equation is a functional equation that involves the finite difference operator in the same way as a differential equation involves derivatives. There are many similarities between difference equations and differential equations. Certain Recurrence relation#Relationship to difference equations narrowly defined, recurrence relations can be written as difference equations by replacing iteration notation with finite differences. In numerical analysis, finite differences are widely used for #Relation with derivatives, approximating derivatives, and the term "finite difference" is often used a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wave Function
In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters and (lower-case and capital psi (letter), psi, respectively). Wave functions are complex number, complex-valued. For example, a wave function might assign a complex number to each point in a region of space. The Born rule provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density function, probability density of measurement in quantum mechanics, measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called ''normalization''. Since the wave function is complex-valued, only its relative phase and relative magnitud ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dirac Algebra
In mathematical physics, the Dirac algebra is the Clifford algebra \text_(\mathbb). This was introduced by the mathematical physicist P. A. M. Dirac in 1928 in developing the Dirac equation for spin- particles with a matrix representation of the gamma matrices, which represent the generators of the algebra. The gamma matrices are a set of four 4\times 4 matrices \ = \ with entries in \mathbb, that is, elements of \text_(\mathbb) that satisfy : \displaystyle\ = \gamma^\mu \gamma^\nu + \gamma^\nu \gamma^\mu = 2 \eta^, where by convention, an identity matrix has been suppressed on the right-hand side. The numbers \eta^ \, are the components of the Minkowski metric. For this article we fix the signature to be ''mostly minus'', that is, (+,-,-,-). The Dirac algebra is then the linear span of the identity, the gamma matrices \gamma^\mu as well as any linearly independent products of the gamma matrices. This forms a finite-dimensional algebra over the field \mathbb or \mathbb, with d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Representation
In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication. In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules. Representations of groups allow many group-theoretic problems to be reduced to problems in linear algebra. In physics, they describe how the symmetry group of a physical system affects the solutions of equations describing that system. The term ''representation of a group'' is also used in a more general sense to mean any "description" of a group as a group of transformations of some mathematical object. More formally, a "representation" means a homomorphism from the group to the autom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Number
In quantum physics and chemistry, quantum numbers are quantities that characterize the possible states of the system. To fully specify the state of the electron in a hydrogen atom, four quantum numbers are needed. The traditional set of quantum numbers includes the principal, azimuthal, magnetic, and spin quantum numbers. To describe other systems, different quantum numbers are required. For subatomic particles, one needs to introduce new quantum numbers, such as the flavour of quarks, which have no classical correspondence. Quantum numbers are closely related to eigenvalues of observables. When the corresponding observable commutes with the Hamiltonian of the system, the quantum number is said to be " good", and acts as a constant of motion in the quantum dynamics. History Electronic quantum numbers In the era of the old quantum theory, starting from Max Planck's proposal of quanta in his model of blackbody radiation (1900) and Albert Einstein's adaptation o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Brillouin Zone
In mathematics and solid state physics, the first Brillouin zone (named after Léon Brillouin) is a uniquely defined primitive cell in reciprocal space Reciprocal lattice is a concept associated with solids with translational symmetry which plays a major role in many areas such as X-ray diffraction, X-ray and Electron diffraction, electron diffraction as well as the Electronic band structure, e .... In the same way the Bravais lattice is divided up into Wigner–Seitz cells in the real lattice, the reciprocal lattice is broken up into Brillouin zones. The boundaries of this cell are given by planes related to points on the reciprocal lattice. The importance of the Brillouin zone stems from the description of waves in a periodic medium given by Bloch's theorem, in which it is found that the solutions can be completely characterized by their behavior in a single Brillouin zone. The first Brillouin zone is the locus of points in reciprocal space that are closer to the or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Momentum
In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass and is its velocity (also a vector quantity), then the object's momentum (from Latin '' pellere'' "push, drive") is: \mathbf = m \mathbf. In the International System of Units (SI), the unit of measurement of momentum is the kilogram metre per second (kg⋅m/s), which is dimensionally equivalent to the newton-second. Newton's second law of motion states that the rate of change of a body's momentum is equal to the net force acting on it. Momentum depends on the frame of reference, but in any inertial frame of reference, it is a ''conserved'' quantity, meaning that if a closed system is not affected by external forces, its total momentum does not change. Momentum is also conserved in special relativity (with a mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Transform
In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term ''Fourier transform'' refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made, the output of the operation is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches. Functions that are localized in the time domain have Fourier transforms that are spread out across the frequency domain and vice versa, a phenomenon known as the uncertainty principle. The critical case for this principle is the Gaussian function, of substantial importance in probability theory and statist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gamma Matrices
In mathematical physics, the gamma matrices, \ \left\\ , also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra \ \mathrm_(\mathbb) ~. It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic particles. Gamma matrices were introduced by Paul Dirac in 1928. In Dirac representation, the four contravariant gamma matrices are : \begin \gamma^0 &= \begin 1 & 0 & 0 & 0 \\ 0 & ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Correlation Function (quantum Field Theory)
In quantum field theory, correlation functions, often referred to as correlators or Green's functions, are vacuum expectation values of time-ordered products of field operators. They are a key object of study in quantum field theory where they can be used to calculate various observables such as S-matrix elements, although they are not themselves observables. This is because they need not be gauge invariant, nor are they unique, with different correlation functions resulting in the same S-matrix and therefore describing the same physics. They are closely related to correlation functions between random variables, although they are nonetheless different objects, being defined in Minkowski spacetime and on quantum operators. Definition For a scalar field theory with a single field \phi(x) and a vacuum state , \Omega\rangle at every event in spacetime, the -point correlation function is the vacuum expectation value of the time-ordered products of field operators in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Symmetry (physics)
The symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is preserved or remains unchanged under some Transformation (function), transformation. A family of particular transformations may be ''continuous'' (such as rotation of a circle) or ''discrete space, discrete'' (e.g., Reflection (physics), reflection of a bilaterally symmetric figure, or rotation of a regular polygon). Continuous and discrete transformations give rise to corresponding types of symmetries. Continuous symmetries can be described by Lie groups while discrete symmetries are described by finite groups (see ''Symmetry group''). These two concepts, Lie and finite groups, are the foundation for the fundamental theories of modern physics. Symmetries are frequently amenable to mathematical formulations such as representation of a Lie group, group representations and can, in addition, be exploited to simplify many problems. Arguably the most important examp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]