Exotic Hadron
   HOME
*



picture info

Exotic Hadron
Exotic hadrons are subatomic particles composed of quarks and gluons, but which – unlike "well-known" hadrons such as protons, neutrons and mesons – consist of more than three valence quarks. By contrast, "ordinary" hadrons contain just two or three quarks. Hadrons with explicit valence gluon content would also be considered exotic. In theory, there is no limit on the number of quarks in a hadron, as long as the hadron's color charge is white, or color-neutral. Consistent with ordinary hadrons, exotic hadrons are classified as being either fermions, like ordinary baryons, or bosons, like ordinary mesons. According to this classification scheme, pentaquarks, containing five valence quarks, are exotic baryons, while tetraquarks (four valence quarks) and hexaquarks (six quarks, consisting of either a dibaryon or three quark-antiquark pairs) would be considered exotic mesons. Tetraquark and pentaquark particles are believed to have been observed and are being investigated; Hexaquar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hexaquark
In particle physics hexaquarks, alternatively known as sexaquarks, are a large family of hypothetical particles, each particle consisting of six quarks or antiquarks of any flavours. Six constituent quarks in any of several combinations could yield a colour charge of zero; for example a hexaquark might contain either six quarks, resembling two baryons bound together (a dibaryon), or three quarks and three antiquarks. Once formed, dibaryons are predicted to be fairly stable by the standards of particle physics. A number of experiments have been suggested to detect dibaryon decays and interactions. In the 1990s, several candidate dibaryon decays were observed but they were not confirmed. There is a theory that strange particles such as hyperons and dibaryons could form in the interior of a neutron star, changing its mass–radius ratio in ways that might be detectable. Accordingly, measurements of neutron stars could set constraints on possible dibaryon properties. A large fracti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LHCb
The LHCb (Large Hadron Collider beauty) experiment is one of eight particle physics detector experiments collecting data at the Large Hadron Collider at CERN. LHCb is a specialized b-physics experiment, designed primarily to measure the parameters of CP violation in the interactions of b-hadrons (heavy particles containing a bottom quark). Such studies can help to explain the matter-antimatter asymmetry of the Universe. The detector is also able to perform measurements of production cross sections, exotic hadron spectroscopy, charm physics and electroweak physics in the forward region. The LHCb collaboration, who built, operate and analyse data from the experiment, is composed of approximately 1260 people from 74 scientific institutes, representing 16 countries. Chris Parkes succeeded on July 1, 2020 as spokesperson for the collaboration to Giovanni Passaleva (spokesperson 2017-2020). The experiment is located at point 8 on the LHC tunnel close to Ferney-Voltaire, France just o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hybrid Hadrons
Hybrid may refer to: Science * Hybrid (biology), an offspring resulting from cross-breeding ** Hybrid grape, grape varieties produced by cross-breeding two ''Vitis'' species ** Hybridity, the property of a hybrid plant which is a union of two different genetic parent strains * Hybrid (particle physics), a valence quark-antiquark pair and one or more gluons * Hybrid solar eclipse, a rare solar eclipse type Technology Transportation * Hybrid vehicle, a vehicle using more than one power source or an engine sourced from a different chassis ** Hybrid electric vehicle, a vehicle using both internal combustion and electric power sources *** Plug-in hybrid, whose battery can be recharged by a charging cable * Hybrid bicycle, a bicycle with features of road and mountain bikes * Hybrid train, a locomotive, railcar, or train that uses an onboard rechargeable energy storage system * Hybrid motorcycle, a motorcycle built using components from more than one original-manufacturer products, such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Glueball
In particle physics, a glueball (also gluonium, gluon-ball) is a hypothetical composite particle. It consists solely of gluon particles, without valence quarks. Such a state is possible because gluons carry color charge and experience the strong interaction between themselves. Glueballs are extremely difficult to identify in particle accelerators, because they mix with ordinary meson states. In pure gauge theory, glueballs are the only states of the spectrum and some of them are stable. Theoretical calculations show that glueballs should exist at energy ranges accessible with current collider technology. However, due to the aforementioned difficulty (among others), they have so far not been observed and identified with certainty, although phenomenological calculations have suggested that an experimentally identified glueball candidate, denoted f_(1710), has properties consistent with those expected of a Standard Model glueball. The prediction that glueballs exist is one of the m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physics Letters
''Physics Letters'' was a scientific journal published from 1962 to 1966, when it split in two series now published by Elsevier: *''Physics Letters A'': condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. *''Physics Letters B'': nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics. ''Physics Letters B'' is part of the SCOAP3 initiative. References See also * List of periodicals published by Elsevier This is a list of scientific, technical and general interest periodicals published by Elsevier or one of its imprints or subsidiary companies. Both printed items and electronic publications are included in this list. A B C D E F G ... ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Chromodynamics
In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called ''color''. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of experimental evidence for QCD has been gathered over the years. QCD exhibits three salient properties: * Color confinement. Due to the force between two color charges remaining constant as they are separated, the energy grows until a quark–antiquark pair is spontaneously produced, turning the initial hadron into a pair of hadrons instead of isolating a color charge. Although ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Murray Gell-Mann
Murray Gell-Mann (; September 15, 1929 – May 24, 2019) was an American physicist who received the 1969 Nobel Prize in Physics for his work on the theory of elementary particles. He was the Robert Andrews Millikan Professor of Theoretical Physics Emeritus at the California Institute of Technology, a distinguished fellow and one of the co-founders of the Santa Fe Institute, a professor of physics at the University of New Mexico, and the Presidential Professor of Physics and Medicine at the University of Southern California. Gell-Mann spent several periods at CERN, a nuclear research facility in Switzerland, among others as a John Simon Guggenheim Memorial Foundation fellow in 1972. Early life and education Gell-Mann was born in Lower Manhattan to a family of Jewish immigrants from the Austro-Hungarian Empire, specifically from Czernowitz in present-day Ukraine. His parents were Pauline (née Reichstein) and Arthur Isidore Gell-Mann, who taught English as a second language ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-matrix
In mathematics, a -matrix is a complex square matrix with every principal minor is positive. A closely related class is that of P_0-matrices, which are the closure of the class of -matrices, with every principal minor \geq 0. Spectra of -matrices By a theorem of Kellogg, the eigenvalues of - and P_0- matrices are bounded away from a wedge about the negative real axis as follows: :If \ are the eigenvalues of an -dimensional -matrix, where n>1, then ::, \arg(u_i), < \pi - \frac,\ i = 1,...,n :If \, u_i \neq 0, i = 1,...,n are the eigenvalues of an -dimensional P_0-matrix, then ::, \arg(u_i), \leq \pi - \frac,\ i = 1,...,n


Remarks

The class of nonsingular ''M''-matrices is a subset of the class of -matrices. More precisely, all matrices that are both -matrices and
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Physics
Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, but ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction. Quarks cannot exist on their own but form hadrons. Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons. Two baryons, the proton and the neutron, make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundredths of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]