Exalcomm
   HOME
*





Exalcomm
In algebra, Exalcomm is a functor classifying the extensions of a commutative algebra by a module. More precisely, the elements of Exalcomm''k''(''R'',''M'') are isomorphism classes of commutative ''k''-algebras ''E'' with a homomorphism onto the ''k''-algebra ''R'' whose kernel is the ''R''-module ''M'' (with all pairs of elements in ''M'' having product 0). Note that some authors use Exal as the same functor. There are similar functors Exal and Exan for non-commutative rings and algebras, and functors Exaltop, Exantop. and Exalcotop that take a topology into account. "Exalcomm" is an abbreviation for "COMMutative ALgebra EXtension" (or rather for the corresponding French phrase). It was introduced by . Exalcomm is one of the André–Quillen cohomology groups and one of the Lichtenbaum–Schlessinger functors. Given homomorphisms of commutative rings ''A'' → ''B'' → ''C'' and a ''C''-module ''L'' there is an exact sequence of ''A''-modules : \begin 0\ri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Module (mathematics)
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication. Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology. Introduction and definition Motivation In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scalars need only be a ring, so the module conc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


André–Quillen Cohomology
In commutative algebra, André–Quillen cohomology is a theory of cohomology for commutative rings which is closely related to the cotangent complex. The first three cohomology groups were introduced by and are sometimes called Lichtenbaum–Schlessinger functors ''T''0, ''T''1, ''T''2, and the higher groups were defined independently by and using methods of homotopy theory. It comes with a parallel homology theory called André–Quillen homology. Motivation Let ''A'' be a commutative ring, ''B'' be an ''A''-algebra, and ''M'' be a ''B''-module. The André–Quillen cohomology groups are the derived functors of the derivation functor Der''A''(''B'', ''M''). Before the general definitions of André and Quillen, it was known for a long time that given morphisms of commutative rings and a ''C''-module ''M'', there is a three-term exact sequence of derivation modules: :0 \to \operatorname_B(C, M) \to \operatorname_A(C, M) \to \operatorname_A(B, M). This term can be extended to a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dual Number
In algebra, the dual numbers are a hypercomplex number system first introduced in the 19th century. They are expressions of the form , where and are real numbers, and is a symbol taken to satisfy \varepsilon^2 = 0 with \varepsilon\neq 0. Dual numbers can be added component-wise, and multiplied by the formula : (a+b\varepsilon)(c+d\varepsilon) = ac + (ad+bc)\varepsilon, which follows from the property and the fact that multiplication is a bilinear operation. The dual numbers form a commutative algebra of dimension two over the reals, and also an Artinian local ring. They are one of the simplest examples of a ring that has nonzero nilpotent elements. History Dual numbers were introduced in 1873 by William Clifford, and were used at the beginning of the twentieth century by the German mathematician Eduard Study, who used them to represent the dual angle which measures the relative position of two skew lines in space. Study defined a dual angle as , where is the angle be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gerbe
In mathematics, a gerbe (; ) is a construct in homological algebra and topology. Gerbes were introduced by Jean Giraud (mathematician), Jean Giraud following ideas of Alexandre Grothendieck as a tool for non-commutative cohomology in degree 2. They can be seen as an analogue of fibre bundles where the fibre is the classifying stack of a group. Gerbes provide a convenient, if highly abstract, language for dealing with many types of Deformation theory, deformation questions especially in modern algebraic geometry. In addition, special cases of gerbes have been used more recently in differential topology and differential geometry to give alternative descriptions to certain cohomology classes and additional structures attached to them. "Gerbe" is a French (and archaic English) word that literally means wheat sheaf (agriculture), sheaf. Definitions Gerbes on a topological space A gerbe on a topological space S is a stack (mathematics), stack \mathcal of groupoids over S which is ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cotangent Complex
In mathematics, the cotangent complex is a common generalisation of the cotangent sheaf, normal bundle and virtual tangent bundle of a map of geometric spaces such as manifolds or schemes. If f: X \to Y is a morphism of geometric or algebraic objects, the corresponding cotangent complex \mathbf_^\bullet can be thought of as a universal "linearization" of it, which serves to control the deformation theory of f. It is constructed as an object in a certain derived category of sheaves on X using the methods of homotopical algebra. Restricted versions of cotangent complexes were first defined in various cases by a number of authors in the early 1960s. In the late 1960s, Michel André and Daniel Quillen independently came up with the correct definition for a morphism of commutative rings, using simplicial methods to make precise the idea of the cotangent complex as given by taking the (non-abelian) left derived functor of Kähler differentials. Luc Illusie then globalized this def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deformation Theory
In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution ''P'' of a problem to slightly different solutions ''P''ε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces. Some characteristic phenomena are: the derivation of first-order equations by treating the ε quantities as having negligible squares; the possibility of ''isolated solutions'', in that varying a solution may not be possible, ''or'' does not bring anything new; and the question of whether the infinitesimal constraints actually 'integrate', so that their solution does provide small variations. In some form these considerations have a history of centuries in mathematics, but also in physics and engineering. For example, in th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cotangent Complex
In mathematics, the cotangent complex is a common generalisation of the cotangent sheaf, normal bundle and virtual tangent bundle of a map of geometric spaces such as manifolds or schemes. If f: X \to Y is a morphism of geometric or algebraic objects, the corresponding cotangent complex \mathbf_^\bullet can be thought of as a universal "linearization" of it, which serves to control the deformation theory of f. It is constructed as an object in a certain derived category of sheaves on X using the methods of homotopical algebra. Restricted versions of cotangent complexes were first defined in various cases by a number of authors in the early 1960s. In the late 1960s, Michel André and Daniel Quillen independently came up with the correct definition for a morphism of commutative rings, using simplicial methods to make precise the idea of the cotangent complex as given by taking the (non-abelian) left derived functor of Kähler differentials. Luc Illusie then globalized this def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Picard Stack
In mathematics, an Abelian 2-group is a higher dimensional analogue of an Abelian group, in the sense of higher algebra, which were originally introduced by Alexander Grothendieck while studying abstract structures surrounding Abelian varieties and Picard groups. More concretely, they are given by groupoids \mathbb which have a bifunctor +:\mathbb\times\mathbb \to \mathbb which acts formally like the addition an Abelian group. Namely, the bifunctor + has a notion of commutativity, associativity, and an identity structure. Although this seems like a rather lofty and abstract structure, there are several (very concrete) examples of Abelian 2-groups. In fact, some of which provide prototypes for more complex examples of higher algebraic structures, such as Abelian n-groups. Definition An Abelian 2-group is a groupoid \mathbb with a bifunctor +:\mathbb\times\mathbb \to \mathbb and natural transformations\begin \tau: & X+Y \Rightarrow Y + X \\ \sigma: & (X+Y)+Z \Rightarrow X+(Y+Z) \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]