HOME
*





Essential Submodule
In mathematics, specifically module theory, given a ring ''R'' and an ''R''-module ''M'' with a submodule ''N'', the module ''M'' is said to be an essential extension of ''N'' (or ''N'' is said to be an essential submodule or large submodule of ''M'') if for every submodule ''H'' of ''M'', :H\cap N=\\, implies that H=\\, As a special case, an essential left ideal of ''R'' is a left ideal that is essential as a submodule of the left module ''R''''R''. The left ideal has non-zero intersection with any non-zero left ideal of ''R''. Analogously, an essential right ideal is exactly an essential submodule of the right ''R'' module ''R''''R''. The usual notations for essential extensions include the following two expressions: :N\subseteq_e M\, , and N\trianglelefteq M The dual notion of an essential submodule is that of superfluous submodule (or small submodule). A submodule ''N'' is superfluous if for any other submodule ''H'', :N+H=M\, implies that H=M\,. The usual notations for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projective Cover
In the branch of abstract mathematics called category theory, a projective cover of an object ''X'' is in a sense the best approximation of ''X'' by a projective object ''P''. Projective covers are the dual of injective envelopes. Definition Let \mathcal be a category and ''X'' an object in \mathcal. A projective cover is a pair (''P'',''p''), with ''P'' a projective object in \mathcal and ''p'' a superfluous epimorphism in Hom(''P'', ''X''). If ''R'' is a ring, then in the category of ''R''-modules, a superfluous epimorphism is then an epimorphism p : P \to X such that the kernel of ''p'' is a superfluous submodule of ''P''. Properties Projective covers and their superfluous epimorphisms, when they exist, are unique up to isomorphism. The isomorphism need not be unique, however, since the projective property is not a full fledged universal property. The main effect of ''p'' having a superfluous kernel is the following: if ''N'' is any proper submodule of ''P'', then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business international ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Canadian Mathematical Bulletin
The ''Canadian Mathematical Bulletin'' (french: Bulletin Canadien de Mathématiques) is a mathematics journal, established in 1958 and published quarterly by the Canadian Mathematical Society. The current editors-in-chief of the journal are Antonio Lei and Javad Mashreghi. The journal publishes short articles in all areas of mathematics that are of sufficient interest to the general mathematical public. Abstracting and indexing The journal is abstracted in:Abstracting and indexing services
for the Canadian Mathematical Bulletin. * '''' * ''
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




David Eisenbud
David Eisenbud (born 8 April 1947 in New York City) is an American mathematician. He is a professor of mathematics at the University of California, Berkeley and Director of the Mathematical Sciences Research Institute (MSRI); he previously served as Director of MSRI from 1997 to 2007. Biography Eisenbud is the son of mathematical physicist Leonard Eisenbud, who was a student and collaborator of the renowned physicist Eugene Wigner. Eisenbud received his Ph.D. in 1970 from the University of Chicago, where he was a student of Saunders Mac Lane and, unofficially, James Christopher Robson. He then taught at Brandeis University from 1970 to 1997, during which time he had visiting positions at Harvard University, Institut des Hautes Études Scientifiques (IHÉS), University of Bonn, and Centre national de la recherche scientifique (CNRS). He joined the staff at MSRI in 1997, and took a position at Berkeley at the same time. From 2003 to 2005 Eisenbud was President of the Americ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stamm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dense Submodule
In abstract algebra, specifically in module theory, a dense submodule of a module is a refinement of the notion of an essential submodule. If ''N'' is a dense submodule of ''M'', it may alternatively be said that "''N'' ⊆ ''M'' is a rational extension". Dense submodules are connected with rings of quotients in noncommutative ring theory. Most of the results appearing here were first established in , and . It should be noticed that this terminology is different from the notion of a dense subset in general topology. No topology is needed to define a dense submodule, and a dense submodule may or may not be topologically dense in a module with topology. Definition This article modifies exposition appearing in and . Let ''R'' be a ring, and ''M'' be a right ''R'' module with submodule ''N''. For an element ''y'' of ''M'', define :y^N=\ \, Note that the expression ''y''−1 is only formal since it is not meaningful to speak of the module-element ''y'' being invertible, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fibre Product
In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit (category theory), limit of a diagram (category theory), diagram consisting of two morphisms and with a common codomain. The pullback is often written : and comes equipped with two natural morphisms and . The pullback of two morphisms and need not exist, but if it does, it is essentially uniquely defined by the two morphisms. In many situations, may intuitively be thought of as consisting of pairs of elements with in , in , and . For the general definition, a universal property is used, which essentially expresses the fact that the pullback is the "most general" way to complete the two given morphisms to a commutative diagram, commutative square. The Dual (category theory), dual concept of the pullback is the ''Pushout (category theory), pushout''. Universal property Explicitly, a pullback of the morphisms and consist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subobject
In category theory, a branch of mathematics, a subobject is, roughly speaking, an object that sits inside another object in the same category. The notion is a generalization of concepts such as subsets from set theory, subgroups from group theory,Mac Lane, p. 126 and subspaces from topology. Since the detailed structure of objects is immaterial in category theory, the definition of subobject relies on a morphism that describes how one object sits inside another, rather than relying on the use of elements. The dual concept to a subobject is a . This generalizes concepts such as quotient sets, quotient groups, quotient spaces, quotient graphs, etc. Definitions In detail, let ''A'' be an object of some category. Given two monomorphisms :u: S \to A \ \text \ v: T\to A with codomain ''A'', we define an equivalence relation by u \equiv v if there exists an isomorphism \phi: S \to T with u = v \circ \phi. Equivalently, we write u \leq v if u factors through ''v''—that is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Abelian Category
In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very ''stable'' categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Abelian categories are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nakayama's Lemma
In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring (typically a commutative ring) and its finitely generated modules. Informally, the lemma immediately gives a precise sense in which finitely generated modules over a commutative ring behave like vector spaces over a field. It is an important tool in algebraic geometry, because it allows local data on algebraic varieties, in the form of modules over local rings, to be studied pointwise as vector spaces over the residue field of the ring. The lemma is named after the Japanese mathematician Tadashi Nakayama and introduced in its present form in , although it was first discovered in the special case of ideals in a commutative ring by Wolfgang Krull and then in general by Goro Azumaya ( 1951). In the commutative case, the lemma is a simple consequence of a generalized ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perfect Ring
In the area of abstract algebra known as ring theory, a left perfect ring is a type of ring in which all left modules have projective covers. The right case is defined by analogy, and the condition is not left-right symmetric; that is, there exist rings which are perfect on one side but not the other. Perfect rings were introduced in Bass's book. A semiperfect ring is a ring over which every finitely generated left module has a projective cover. This property is left-right symmetric. Perfect ring Definitions The following equivalent definitions of a left perfect ring ''R'' are found in Aderson and Fuller: * Every left ''R'' module has a projective cover. * ''R''/J(''R'') is semisimple and J(''R'') is left T-nilpotent (that is, for every infinite sequence of elements of J(''R'') there is an ''n'' such that the product of first ''n'' terms are zero), where J(''R'') is the Jacobson radical of ''R''. * (Bass' Theorem P) ''R'' satisfies the descending chain condition on principa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]