Elongation Factor 4
   HOME
*





Elongation Factor 4
Elongation factor 4 (EF-4) is an elongation factor that is thought to back- translocate on the ribosome during the translation of RNA to proteins. It is found near-universally in bacteria and in eukaryotic endosymbiotic organelles including the mitochondria and the plastid. Responsible for proofreading during protein synthesis, EF-4 is a recent addition to the nomenclature of bacterial elongation factors. Prior to its recognition as an elongation factor, EF-4 was known as leader peptidase A (LepA), as it is the first cistron on the operon carrying the bacterial leader peptidase. In eukaryotes it is traditionally called GUF1 (GTPase of Unknown Function 1). It has the preliminary EC number 3.6.5.n1. Evolutionary background LepA has a highly conserved sequence. LepA orthologs have been found in bacteria and almost all eukaryotes. The conservation in LepA has been shown to cover the entire protein. More specifically, the amino acid identity of LepA among bacterial orthologs ran ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GUF1
GUF1 homolog, GTPase is a protein that in humans is encoded by the GUF1 gene. It is the mitochondrial homolog of elongation factor 4 Elongation factor 4 (EF-4) is an elongation factor that is thought to back-Protein targeting, translocate on the ribosome during the translation of RNA to proteins. It is found near-universally in bacteria and in eukaryotic endosymbiotic organel .... References Further reading

* {{gene-4-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cistron
A cistron is an alternative term for "gene". The word cistron is used to emphasize that genes exhibit a specific behavior in a cis-trans test; distinct positions (or loci) within a genome are cistronic. History The words ''cistron'' and ''gene'' were coined before the advancing state of biology made it clear that the concepts they refer to are practically equivalent. The same historical naming practices are responsible for many of the synonyms in the life sciences. The term cistron was coined by Seymour Benzer in an article entitled ''The elementary units of heredity''. also reprinted in The cistron was defined by an operational test applicable to most organisms that is sometimes referred to as a cis-trans test, but more often as a complementation test. Definition For example, suppose a mutation at a chromosome position x is responsible for a change in recessive trait in a diploid organism (where chromosomes come in pairs). We say that the mutation is recessive because the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Assay
An assay is an investigative (analytic) procedure in laboratory medicine, mining, pharmacology, environmental biology and molecular biology for qualitatively assessing or quantitatively measuring the presence, amount, or functional activity of a target entity. The measured entity is often called the analyte, the measurand, or the target of the assay. The analyte can be a drug, biochemical substance, chemical element or compound, or cell in an organism or organic sample. An assay usually aims to measure an analyte's intensive property and express it in the relevant measurement unit (e.g. molarity, density, functional activity in enzyme international units, degree of effect in comparison to a standard, etc.). If the assay involves exogenous reactants (the reagents), then their quantities are kept fixed (or in excess) so that the quantity and quality of the target are the only limiting factors. The difference in the assay outcome is used to deduce the unknown quality or quantity o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reverse Transcription
A reverse transcriptase (RT) is an enzyme used to generate complementary DNA (cDNA) from an RNA template, a process termed reverse transcription. Reverse transcriptases are used by viruses such as HIV and hepatitis B to replicate their genomes, by retrotransposon mobile genetic elements to proliferate within the host genome, and by eukaryotic cells to extend the telomeres at the ends of their linear chromosomes. Contrary to a widely held belief, the process does not violate the flows of genetic information as described by the classical central dogma, as transfers of information from RNA to DNA are explicitly held possible. Retroviral RT has three sequential biochemical activities: RNA-dependent DNA polymerase activity, ribonuclease H (RNase H), and DNA-dependent DNA polymerase activity. Collectively, these activities enable the enzyme to convert single-stranded RNA into double-stranded cDNA. In retroviruses and retrotransposons, this cDNA can then integrate into the host genom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Primer (molecular Biology)
Primer may refer to: Arts, entertainment, and media Films * ''Primer'' (film), a 2004 feature film written and directed by Shane Carruth * ''Primer'' (video), a documentary about the funk band Living Colour Literature * Primer (textbook), a textbook used in primary education to teach the alphabet and other basic subjects * Primer (prayer book), a common name for English prayer books used from the 13th to 16th centuries * ''The New England Primer'' (1688), a Puritan book from Colonial America with morality-themed rhymes Music * ''Primer'' (album), a 1995 music album by the musical group Rockapella * Primer 55, an American alternative metal band * "The Primer", a song from the 2005 album ''Alaska'' by Between the Buried and Me Firearms * Primer (firearms), a firearm powder charge-ignition mechanism ** Centerfire ammunition, Boxer or Berdan primers used in modern centerfire cartridges ** Detonator, a small explosive device also known as an explosive primer or blasting cap ** Fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Puromycin
Puromycin is an antibiotic protein synthesis inhibitor which causes premature chain termination during translation. Inhibition of translation Puromycin is an aminonucleoside antibiotic, derived from the '' Streptomyces alboniger'' bacterium, that causes premature chain termination during translation taking place in the ribosome. Part of the molecule resembles the 3' end of the aminoacylated tRNA. It enters the A site and transfers to the growing chain, causing the formation of a puromycylated nascent chain and premature chain release. The exact mechanism of action is unknown at this time but the 3' position contains an amide linkage instead of the normal ester linkage of tRNA. That makes the molecule much more resistant to hydrolysis and stops the ribosome. Puromycin is selective for either prokaryotes or eukaryotes. Also of note, puromycin is critical in mRNA display. In this reaction, a puromycin molecule is chemically attached to the end of an mRNA template, which is then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peptide Bond
In organic chemistry, a peptide bond is an amide type of covalent chemical bond linking two consecutive alpha-amino acids from C1 (carbon number one) of one alpha-amino acid and N2 (nitrogen number two) of another, along a peptide or protein chain. It can also be called a eupeptide bond to distinguish it from an isopeptide bond, which is another type of amide bond between two amino acids. Synthesis When two amino acids form a ''dipeptide'' through a ''peptide bond'', it is a type of condensation reaction. In this kind of condensation, two amino acids approach each other, with the non-side chain (C1) carboxylic acid moiety of one coming near the non-side chain (N2) amino moiety of the other. One loses a hydrogen and oxygen from its carboxyl group (COOH) and the other loses a hydrogen from its amino group (NH2). This reaction produces a molecule of water (H2O) and two amino acids joined by a peptide bond (−CO−NH−). The two joined amino acids are called a dipeptide. The am ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GTPase
GTPases are a large family of hydrolase enzymes that bind to the nucleotide guanosine triphosphate (GTP) and hydrolyze it to guanosine diphosphate (GDP). The GTP binding and hydrolysis takes place in the highly conserved P-loop "G domain", a protein domain common to many GTPases. Functions GTPases function as molecular switches or timers in many fundamental cellular processes. Examples of these roles include: * Signal transduction in response to activation of cell surface receptors, including transmembrane receptors such as those mediating taste, smell and vision. * Protein biosynthesis (a.k.a. translation) at the ribosome. * Regulation of cell differentiation, proliferation, division and movement. * Translocation of proteins through membranes. * Transport of vesicles within the cell, and vesicle-mediated secretion and uptake, through GTPase control of vesicle coat assembly. GTPases are active when bound to GTP and inactive when bound to GDP. In the generalized recepto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

TRNA
Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the mRNA and the amino acid sequence of proteins. tRNAs genes from Bacteria are typically shorter (mean = 77.6 bp) than tRNAs from Archaea (mean = 83.1 bp) and eukaryotes (mean = 84.7 bp). The mature tRNA follows an opposite pattern with tRNAs from Bacteria being usually longer (median = 77.6 nt) than tRNAs from Archaea (median = 76.8 nt), with eukaryotes exhibiting the shortest mature tRNAs (median = 74.5 nt). Transfer RNA (tRNA) does this by carrying an amino acid to the protein synthesizing machinery of a cell called the ribosome. Complementation of a 3-nucleotide codon in a messenger RNA (mRNA) by a 3-nucleotide anticodon of the tRNA results in protein synthesis based on the mRNA code. As such, tRNAs are a necessary component of translation, the biological ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Human Cell
There are many different types of cells in the human body. Cells derived primarily from endoderm Exocrine secretory epithelial cells * Brunner's gland cell in duodenum (enzymes and alkaline mucus) *Insulated goblet cell of respiratory and digestive tracts (mucus secretion) *Stomach **Foveolar cell (mucus secretion) **Chief cell ( pepsinogen secretion) **Parietal cell (hydrochloric acid secretion) * Pancreatic acinar cell (bicarbonate and digestive enzyme secretion) *Paneth cell of small intestine (lysozyme secretion) *Type II pneumocyte of lung ( surfactant secretion) *Club cell of lung Barrier cells *Type I pneumocyte (lung) * Gall bladder epithelial cell * Centroacinar cell (pancreas) *Intercalated duct cell (pancreas) *Intestinal brush border cell (with microvilli) Hormone-secreting cells *Enteroendocrine cell **K cell (secretes gastric inhibitory peptide) **L cell (secretes glucagon-like peptide-1, peptide YY3-36, oxyntomodulin, and glucagon-like peptide-2) ** ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Yeast Cell
Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to constitute 1% of all described fungal species. Yeasts are unicellular organisms that evolved from multicellular ancestors, with some species having the ability to develop multicellular characteristics by forming strings of connected budding cells known as pseudohyphae or false hyphae. Yeast sizes vary greatly, depending on species and environment, typically measuring 3–4 µm in diameter, although some yeasts can grow to 40 µm in size. Most yeasts reproduce asexually by mitosis, and many do so by the asymmetric division process known as budding. With their single-celled growth habit, yeasts can be contrasted with molds, which grow hyphae. Fungal species that can take both forms (depending on temperature or other conditions) are called ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

EF-G
EF-G (elongation factor G, historically known as translocase) is a prokaryotic elongation factor involved in protein translation. As a GTPase, EF-G catalyzes the movement (translocation) of transfer RNA (tRNA) and messenger RNA (mRNA) through the ribosome. Structure Encoded by the ''fusA'' gene on the ''str'' operon, EF-G is made up of 704 amino acids that form 5 domains, labeled Domain I through Domain V. Domain I may be referred to as the G-domain or as Domain I(G), since it binds to and hydrolyzes guanosine triphosphate (GTP). Domain I also helps EF-G bind to the ribosome, and contains the N-terminal of the polypeptide chain. Domain IV is important for translocation, as it undergoes a significant conformational change and enters the A site on the 30S ribosomal subunit, pushing the mRNA and tRNA molecules from the A site to the P site. The five domains may be also separated into two super-domains. Super-domain I consists of Domains I and II, and super-domain II consists o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]