HOME
*





Elementary Definition
In mathematical logic, an elementary definition is a definition that can be made using only finitary first-order logic, and in particular without reference to set theory or using extensions such as plural quantification. Elementary definitions are of particular interest because they admit a complete proof apparatus while still being expressive enough to support most everyday mathematics (via the addition of elementarily-expressible axioms such as Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such ... (ZFC)). Saying that a definition is elementary is a weaker condition than saying it is algebraic. Related * Elementary sentence * Elementary theory References * Mac Lane and Moerdijk, ''Sheaves in Geometry and Logic: A First Introduction to Topos Theory,'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory sho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finitary
In mathematics and logic, an operation is finitary if it has finite arity, i.e. if it has a finite number of input values. Similarly, an infinitary operation is one with an infinite number of input values. In standard mathematics, an operation is finitary by definition. Therefore these terms are usually only used in the context of infinitary logic. Finitary argument A finitary argument is one which can be translated into a finite set of symbolic propositions starting from a finiteThe number of axioms ''referenced'' in the argument will necessarily be finite since the proof is finite, but the number of axioms from which these are ''chosen'' is infinite when the system has axiom schemes, e.g. the axiom schemes of propositional calculus. set of axioms. In other words, it is a proof (including all assumptions) that can be written on a large enough sheet of paper. By contrast, infinitary logic studies logics that allow infinitely long statements and proofs. In such a logic, one can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists''"'' is a quantifier, while ''x'' is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic is usually a first-order logic together with a specified domain of discourse (over which the quantified variables range), finitely many functions from that domain to itself, finitely many predicates defined on that domain, and a set of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plural Quantification
In mathematics and logic, plural quantification is the theory that an individual variable x may take on ''plural'', as well as singular, values. As well as substituting individual objects such as Alice, the number 1, the tallest building in London etc. for x, we may substitute both Alice and Bob, or all the numbers between 0 and 10, or all the buildings in London over 20 stories. The point of the theory is to give first-order logic the power of set theory, but without any " existential commitment" to such objects as sets. The classic expositions are Boolos 1984 and Lewis 1991. History The view is commonly associated with George Boolos, though it is older (see notably Simons 1982), and is related to the view of classes defended by John Stuart Mill and other nominalist philosophers. Mill argued that universals or "classes" are not a peculiar kind of thing, having an objective existence distinct from the individual objects that fall under them, but "is neither more nor less than ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gödel's Completeness Theorem
Gödel's completeness theorem is a fundamental theorem in mathematical logic that establishes a correspondence between semantic truth and syntactic provability in first-order logic. The completeness theorem applies to any first-order theory: If ''T'' is such a theory, and φ is a sentence (in the same language) and every model of ''T'' is a model of φ, then there is a (first-order) proof of φ using the statements of ''T'' as axioms. One sometimes says this as "anything universally true is provable". This does not contradict Gödel's incompleteness theorem, which shows that some formula φu is unprovable although true in the natural numbers, which are a particular model of a first-order theory describing them — φu is just false in some other model of the first-order theory being considered (such as a non-standard model of arithmetic for Peano arithmetic). It makes a close link between model theory that deals with what is true in different models, and proof theory tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Zermelo–Fraenkel Set Theory
In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded. Informally, Zermelo–Fraenkel set theory is intended to formalize a single primitive notion, that of a hereditary well-founded set, so that all entities in the universe of discourse are such sets. Thus the axioms of Zermelo–Fraenkel set theory refer only to pure sets and prevent its models from conta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Definition
In mathematical logic, an algebraic definition is one that can be given using only equations between terms with free variables. Inequalities and quantifiers are specifically disallowed. Saying that a definition is algebraic is a stronger condition than saying it is elementary. Related *Algebraic sentence *Algebraic theory *Algebraic expression *Algebraic equation In mathematics, an algebraic equation or polynomial equation is an equation of the form :P = 0 where ''P'' is a polynomial with coefficients in some field, often the field of the rational numbers. For many authors, the term ''algebraic equation'' ... References Mathematical logic {{mathlogic-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elementary Sentence
In mathematical logic, an elementary sentence is one that is stated using only finitary first-order logic, without reference to set theory or using any axioms which have consistency strength equal to set theory. Saying that a sentence is elementary is a weaker condition than saying it is algebraic. Related * Elementary theory *Elementary definition In mathematical logic, an elementary definition is a definition that can be made using only finitary first-order logic, and in particular without reference to set theory or using extensions such as plural quantification. Elementary definitions are ... References * Mac Lane and Moerdijk, ''Sheaves in Geometry and Logic: A First Introduction to Topos Theory,'' page 4. {{mathlogic-stub Mathematical logic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elementary Theory
Elementary may refer to: Arts, entertainment, and media Music * ''Elementary'' (Cindy Morgan album), 2001 * ''Elementary'' (The End album), 2007 * ''Elementary'', a Melvin "Wah-Wah Watson" Ragin album, 1977 Other uses in arts, entertainment, and media * ''Elementary'' (TV series), a 2012 American drama television series * "Elementary, my dear Watson", a catchphrase of Sherlock Holmes Education * Elementary and Secondary Education Act, US * Elementary education, or primary education, the first years of formal, structured education * Elementary Education Act 1870, England and Wales * Elementary school, a school providing elementary or primary education Science and technology * ELEMENTARY, a class of objects in computational complexity theory * Elementary, a widget set based on the Enlightenment Foundation Libraries * Elementary abelian group, an abelian group in which every nontrivial element is of prime order * Elementary algebra * Elementary arithmetic * Elementary charge, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]