Edge Space
   HOME
*





Edge Space
In the mathematical discipline of graph theory, the edge space and vertex space of an undirected graph are vector spaces defined in terms of the edge and vertex sets, respectively. These vector spaces make it possible to use techniques of linear algebra in studying the graph. Definition Let G:=(V,E) be a finite undirected graph. The vertex space \mathcal(G) of ''G'' is the vector space over the finite field of two elements \mathbb/2\mathbb:=\lbrace 0,1 \rbrace of all functions V\rightarrow \mathbb/2\mathbb. Every element of \mathcal(G) naturally corresponds the subset of ''V'' which assigns a 1 to its vertices. Also every subset of ''V'' is uniquely represented in \mathcal(G) by its characteristic function. The edge space \mathcal(G) is the \mathbb/2\mathbb-vector space freely generated by the edge set ''E''. The dimension of the vertex space is thus the number of vertices of the graph, while the dimension of the edge space is the number of edges. These definitions can b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scalar Multiplication
In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector by a positive real number multiplies the magnitude of the vector—without changing its direction. The term "scalar" itself derives from this usage: a scalar is that which scales vectors. Scalar multiplication is the multiplication of a vector by a scalar (where the product is a vector), and is to be distinguished from inner product of two vectors (where the product is a scalar). Definition In general, if ''K'' is a field and ''V'' is a vector space over ''K'', then scalar multiplication is a function from ''K'' × ''V'' to ''V''. The result of applying this function to ''k'' in ''K'' and v in ''V'' is denoted ''k''v. Properties Scalar multiplication obeys the following rules ''(vector in boldface)'': * Additivity in the scalar: (''c' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Subspace
In mathematics, and more specifically in linear algebra, a linear subspace, also known as a vector subspaceThe term ''linear subspace'' is sometimes used for referring to flats and affine subspaces. In the case of vector spaces over the reals, linear subspaces, flats, and affine subspaces are also called ''linear manifolds'' for emphasizing that there are also manifolds. is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a ''subspace'' when the context serves to distinguish it from other types of subspaces. Definition If ''V'' is a vector space over a field ''K'' and if ''W'' is a subset of ''V'', then ''W'' is a linear subspace of ''V'' if under the operations of ''V'', ''W'' is a vector space over ''K''. Equivalently, a nonempty subset ''W'' is a subspace of ''V'' if, whenever are elements of ''W'' and are elements of ''K'', it follows that is in ''W''. As a corollary, all vector spaces are equipped with at least two ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cut Space
In graph theory, a cut is a partition of the vertices of a graph into two disjoint subsets. Any cut determines a cut-set, the set of edges that have one endpoint in each subset of the partition. These edges are said to cross the cut. In a connected graph, each cut-set determines a unique cut, and in some cases cuts are identified with their cut-sets rather than with their vertex partitions. In a flow network, an s–t cut is a cut that requires the ''source'' and the ''sink'' to be in different subsets, and its ''cut-set'' only consists of edges going from the source's side to the sink's side. The ''capacity'' of an s–t cut is defined as the sum of the capacity of each edge in the ''cut-set''. Definition A cut is a partition of of a graph into two subsets and . The cut-set of a cut is the set of edges that have one endpoint in and the other endpoint in . If and are specified vertices of the graph , then an cut is a cut in which belongs to the set and belongs to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cycle Space
In graph theory, a branch of mathematics, the (binary) cycle space of an undirected graph is the set of its even-degree subgraphs. This set of subgraphs can be described algebraically as a vector space over the two-element finite field. The dimension of this space is the circuit rank of the graph. The same space can also be described in terms from algebraic topology as the first homology group of the graph. Using homology theory, the binary cycle space may be generalized to cycle spaces over arbitrary rings. Definitions Graph theory A spanning subgraph of a given graph ''G'' may be defined from any subset ''S'' of the edges of ''G''. The subgraph has the same set of vertices as ''G'' itself (this is the meaning of the word "spanning") but has the elements of ''S'' as its edges. Thus, a graph ''G'' with ''m'' edges has 2''m'' spanning subgraphs, including ''G'' itself as well as the empty graph on the same set of vertices as ''G''. The collection of all spanning subgraphs of a g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Incident (graph Theory)
In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called '' vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. Graphs are one of the objects of study in discrete mathematics. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' means that ''A'' owes money to ''B'', th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vertex Space
Vertex, vertices or vertexes may refer to: Science and technology Mathematics and computer science *Vertex (geometry), a point where two or more curves, lines, or edges meet *Vertex (computer graphics), a data structure that describes the position of a point *Vertex (curve), a point of a plane curve where the first derivative of curvature is zero *Vertex (graph theory), the fundamental unit of which graphs are formed *Vertex (topography), in a triangulated irregular network *Vertex of a representation, in finite group theory Physics *Vertex (physics), the reconstructed location of an individual particle collision *Vertex (optics), a point where the optical axis crosses an optical surface *Vertex function, describing the interaction between a photon and an electron Biology and anatomy *Vertex (anatomy), the highest point of the head * Vertex (urinary bladder), alternative name of the apex of urinary bladder *Vertex distance, the distance between the surface of the cornea of the e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Transformation
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a (linear) ''endomorphism''. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Sometimes the term ''linear function'' has the same meaning as ''linear map ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Incidence Matrix
In mathematics, an incidence matrix is a logical matrix that shows the relationship between two classes of objects, usually called an incidence relation. If the first class is ''X'' and the second is ''Y'', the matrix has one row for each element of ''X'' and one column for each element of ''Y''. The entry in row ''x'' and column ''y'' is 1 if ''x'' and ''y'' are related (called ''incident'' in this context) and 0 if they are not. There are variations; see below. Graph theory Incidence matrix is a common graph representation in graph theory. It is different to an adjacency matrix, which encodes the relation of vertex-vertex pairs. Undirected and directed graphs In graph theory an undirected graph has two kinds of incidence matrices: unoriented and oriented. The ''unoriented incidence matrix'' (or simply ''incidence matrix'') of an undirected graph is a n\times m matrix ''B'', where ''n'' and ''m'' are the numbers of vertices and edges respectively, such that :B_=\left\{\begin{a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Singleton (mathematics)
In mathematics, a singleton, also known as a unit set or one-point set, is a set with exactly one element. For example, the set \ is a singleton whose single element is 0. Properties Within the framework of Zermelo–Fraenkel set theory, the axiom of regularity guarantees that no set is an element of itself. This implies that a singleton is necessarily distinct from the element it contains, thus 1 and are not the same thing, and the empty set is distinct from the set containing only the empty set. A set such as \ is a singleton as it contains a single element (which itself is a set, however, not a singleton). A set is a singleton if and only if its cardinality is . In von Neumann's set-theoretic construction of the natural numbers, the number 1 is ''defined'' as the singleton \. In axiomatic set theory, the existence of singletons is a consequence of the axiom of pairing: for any set ''A'', the axiom applied to ''A'' and ''A'' asserts the existence of \, which is the same a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Difference
In mathematics, the symmetric difference of two sets, also known as the disjunctive union, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets \ and \ is \. The symmetric difference of the sets ''A'' and ''B'' is commonly denoted by A \ominus B, or A\operatorname \triangle B. The power set of any set becomes an abelian group under the operation of symmetric difference, with the empty set as the neutral element of the group and every element in this group being its own inverse. The power set of any set becomes a Boolean ring, with symmetric difference as the addition of the ring and intersection as the multiplication of the ring. Properties The symmetric difference is equivalent to the union of both relative complements, that is: :A\,\triangle\,B = \left(A \setminus B\right) \cup \left(B \setminus A\right), The symmetric difference can also be expressed using the XOR operation ⊕ on t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]