Erathem
__NOTOC__ In stratigraphy, paleontology, geology, and geobiology an erathem is the total stratigraphic unit deposited during a certain corresponding span of time during an era in the geologic timescale. It can therefore be used as a chronostratigraphic unit of time which delineates a large span of years – less than a geological eon, but greater than its successively smaller and more refined subdivisions (geologic periods, epochs, and geologic ages). By 3,500 million years ago (Mya) simple life had developed on earth (the oldest known microbial fossils in Australia are dated to this figure). The atmosphere was a mix of noxious and poisonous gases (methane, ammonia, sulfur compounds, etc. – a so-called reducing atmospherebasis for the Miller–Urey experiment lacking much free oxygen which was bound up in compounds). These simple organisms, cyanobacteria ruled the still cooling earth for approximately a billion years and gradually transformed the atmosphere to one containing ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Era (geology)
The geologic time scale, or geological time scale, (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochronology (scientific branch of geology that aims to determine the age of rocks). It is used primarily by Earth scientists (including geologists, paleontologists, geophysicists, geochemists, and paleoclimatologists) to describe the timing and relationships of events in geologic history. The time scale has been developed through the study of rock layers and the observation of their relationships and identifying features such as lithologies, paleomagnetic properties, and fossils. The definition of standardized international units of geologic time is the responsibility of the International Commission on Stratigraphy (ICS), a constituent body of the International Union of Geological Sciences (IUGS), whose primary objective is to precisely def ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Age (geology)
The geologic time scale, or geological time scale, (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochronology (scientific branch of geology that aims to determine the age of rocks). It is used primarily by Earth scientists (including geologists, paleontologists, geophysicists, geochemists, and paleoclimatologists) to describe the timing and relationships of events in geologic history. The time scale has been developed through the study of rock layers and the observation of their relationships and identifying features such as lithologies, paleomagnetic properties, and fossils. The definition of standardized international units of geologic time is the responsibility of the International Commission on Stratigraphy (ICS), a constituent body of the International Union of Geological Sciences (IUGS), whose primary objective is to precis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geologic Timescale
The geologic time scale, or geological time scale, (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochronology (scientific branch of geology that aims to determine the age of rocks). It is used primarily by Earth scientists (including geologists, paleontologists, geophysicists, geochemists, and paleoclimatologists) to describe the timing and relationships of events in geologic history. The time scale has been developed through the study of rock layers and the observation of their relationships and identifying features such as lithologies, paleomagnetic properties, and fossils. The definition of standardized international units of geologic time is the responsibility of the International Commission on Stratigraphy (ICS), a constituent body of the International Union of Geological Sciences (IUGS), whose primary objective is to precisel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eon (geology)
The geologic time scale, or geological time scale, (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochronology (scientific branch of geology that aims to determine the age of rocks). It is used primarily by Earth scientists (including geologists, paleontologists, geophysicists, geochemists, and paleoclimatologists) to describe the timing and relationships of events in geologic history. The time scale has been developed through the study of rock layers and the observation of their relationships and identifying features such as lithologies, paleomagnetic properties, and fossils. The definition of standardized international units of geologic time is the responsibility of the International Commission on Stratigraphy (ICS), a constituent body of the International Union of Geological Sciences (IUGS), whose primary objective is to precisely def ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Period (geology)
The geologic time scale, or geological time scale, (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochronology (scientific branch of geology that aims to determine the age of rocks). It is used primarily by Earth scientists (including geologists, paleontologists, geophysicists, geochemists, and paleoclimatologists) to describe the timing and relationships of events in geologic history. The time scale has been developed through the study of rock layers and the observation of their relationships and identifying features such as lithologies, paleomagnetic properties, and fossils. The definition of standardized international units of geologic time is the responsibility of the International Commission on Stratigraphy (ICS), a constituent body of the International Union of Geological Sciences (IUGS), whose primary objective is to precisely ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Epoch (geology)
The geologic time scale, or geological time scale, (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochronology (scientific branch of geology that aims to determine the age of rocks). It is used primarily by Earth scientists (including geologists, paleontologists, geophysicists, geochemists, and paleoclimatologists) to describe the timing and relationships of events in geologic history. The time scale has been developed through the study of rock layers and the observation of their relationships and identifying features such as lithologies, paleomagnetic properties, and fossils. The definition of standardized international units of geologic time is the responsibility of the International Commission on Stratigraphy (ICS), a constituent body of the International Union of Geological Sciences (IUGS), whose primary objective is to precisel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Paleoarchean
The Paleoarchean (), also spelled Palaeoarchaean (formerly known as early Archean), is a geologic era within the Archaean Eon. The name derives from Greek "Palaios" ''ancient''. It spans the period of time . The era is defined chronometrically and is not referenced to a specific level of a rock section on Earth. The earliest confirmed evidence of life comes from this era, and Vaalbara, one of Earth's earliest supercontinents, may have formed during this era. Early life The geological record from the Paleoarchean era is very limited. Due to deformation and metamorphism, most rocks from the Paleoarchean era cannot provide any useful information. There are only two locations in the world containing rock formations that are intact enough to preserve evidence of early life: the Kaapvaal Craton in Southern Africa and the Pilbara Craton in Western Australia. The Dresser Formation, located in the Pilbara Craton, contains samples of sedimentary rock from the Paleoarchean Era. Inside t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mesoarchean
The Mesoarchean (, also spelled Mesoarchaean) is a geologic era in the Archean Eon, spanning , which contains the first evidence of modern-style plate subduction and expansion of microbial life. The era is defined chronometrically and is not referenced to a specific level in a rock section on Earth. Tectonics The Mesoarchean era is thought to be the birthplace of modern-style plate subduction, based on geologic evidence from the Pilbara craton in western Australia. A convergent margin with a modern-style oceanic arc existed at the boundary between West and East Pilbara approximately 3.12 Ga. By 2.97 Ga, the West Pilbara Terrane converged with and accreted onto the East Pilbara Terrane. A supercontinent, Vaalbara, may have existed in the Mesoarchean. Environmental conditions Analysis of oxygen isotopes in Mesoarchean cherts has been helpful in reconstructing Mesoarchean surface temperatures. These cherts led researchers to draw an estimate of an oceanic temperature ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neoarchean
The Neoarchean (; also spelled Neoarchaean) is the last geologic era in the Archean eon that spans from 2800 to 2500 million years ago—the period being defined chronometrically and not referencing a specific level in a rock section on Earth. The era is marked by major developments in complex life and continental formation. Complex life This era saw the rise of oxygen in the atmosphere after oxygenic photosynthesis evolved as early as the Mesoarchean era. The environmental changes that occurred in the Neoarchean such as its developing atmospheric and soil compositions drastically differentiated the era from others in its encouragement of microbial metabolisms to evolve and diversify. The era could have also seen pre-biotic organic molecules being brought to Earth through meteorites, comets, or through abiotic reactions. The growth of juvenile continental crust as well as the onset of plate tectonics in the Archean allowed for the colonization of a larger variety of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eoarchean
The Eoarchean (; also spelled Eoarchaean) is the first era of the Archean Eon of the geologic record. It spans 400 million years, from the end of the Hadean Eon 4 billion years ago (4000 Mya) to the start of the Paleoarchean Era 3600 Mya. The beginnings of life on Earth have been dated to this era and evidence of cyanobacteria date to 3500 Mya, comparatively shortly after the Eoarchean. At that time, the atmosphere was without oxygen and the pressure values ranged from 10 to 100 bar (around 10 to 100 times the atmospheric pressure today). Chronology The Eoarchean Era was formerly officially unnamed and informally referred to as the first part of the ''Early Archean'' Eon (which is now an obsolete name) alongside the Paleoarchean Era. The International Commission on Stratigraphy now officially recognizes the Eoarchean Era as the first part of the Archaean Eon, preceded by the Hadean Eon, during which the Earth is believed to have been essentially molten. The Eoarchaean ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mesoproterozoic
The Mesoproterozoic Era is a geologic era that occurred from . The Mesoproterozoic was the first era of Earth's history for which a fairly definitive geological record survives. Continents existed during the preceding era (the Paleoproterozoic), but little is known about them. The continental masses of the Mesoproterozoic were more or less the same ones that exist today, although their arrangement on the Earth's surface was different. Major events and characteristics The major events of this era are the breakup of the Columbia supercontinent, the formation of the Rodinia supercontinent, and the evolution of sexual reproduction. This era is marked by the further development of continental plates and plate tectonics. The supercontinent of Columbia broke up between 1500 and 1350 million years ago, and the fragments reassembled into the supercontinent of Rodinia around 1100 to 900 million years ago, on the time boundary between the Mesoproterozoic and the subsequent Neoprotero ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neoproterozoic
The Neoproterozoic Era is the unit of geologic time from 1 billion to 538.8 million years ago. It is the last era of the Precambrian Supereon and the Proterozoic Eon; it is subdivided into the Tonian, Cryogenian, and Ediacaran periods. It is preceded by the Mesoproterozoic Era and succeeded by the Paleozoic Era of the Phanerozoic Eon. The most severe glaciation known in the geologic record occurred during the Cryogenian, when ice sheets may have reached the equator and formed a " Snowball Earth". The earliest fossils of complex multicellular life are found in the Ediacaran Period. These organisms make up the Ediacaran biota, including the oldest definitive animals in the fossil record. According to Rino and co-workers, the sum of the continental crust formed in the Pan-African orogeny and the Grenville orogeny makes the Neoproterozoic the period of Earth's history that has produced most continental crust. Geology At the onset of the Neoproterozoic the supercon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |