HOME
*





Device-independent Quantum Cryptography
A quantum cryptographic protocol is device-independent if its security does not rely on trusting that the quantum devices used are truthful. Thus the security analysis of such a protocol needs to consider scenarios of imperfect or even malicious devices. Several important problems have been shown to admit unconditional secure and device-independent protocols. A closely related topic (that is not discussed in this article) is measurement-device independent quantum key distribution. Overview and history Mayers and Yao proposed the idea of designing quantum protocols using "self-testing" quantum apparatus, the internal operations of which can be uniquely determined by their input-output statistics. Subsequently, Roger Colbeck in his Thesis proposed the use of Bell tests for checking the honesty of the devices. Since then, several problems have been shown to admit unconditional secure and device-independent protocols, even when the actual devices performing the Bell test are substantia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Andrew Yao
Andrew Chi-Chih Yao (; born December 24, 1946) is a Chinese computer scientist and computational theorist. He is currently a professor and the dean of Institute for Interdisciplinary Information Sciences (IIIS) at Tsinghua University. Yao used the minimax theorem to prove what is now known as Yao's Principle. Yao was a naturalized U.S. citizen, and worked for many years in the U.S. In 2015, together with Yang Chen-Ning, he renounced his U.S. citizenship and became an academician of the Chinese Academy of Sciences. Early life Yao was born in Shanghai, China. He completed his undergraduate education in physics at the National Taiwan University, before completing a Doctor of Philosophy in physics at Harvard University in 1972, and then a second PhD in computer science from the University of Illinois at Urbana–Champaign in 1975. Academic career Yao was an assistant professor at Massachusetts Institute of Technology (1975–1976), assistant professor at Stanford University ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bell Test
A Bell test, also known as Bell inequality test or Bell experiment, is a real-world physics experiment designed to test the theory of quantum mechanics in relation to Albert Einstein's concept of local realism. Named for John Stewart Bell, the experiments test whether or not the real world satisfies local realism, which requires the presence of some additional local variables (called "hidden" because they are not a feature of quantum theory) to explain the behavior of particles like photons and electrons. To date, all Bell tests have found that the hypothesis of local hidden variables is inconsistent with the way that physical systems behave. According to Bell's theorem, if nature actually operates in accord with any theory of local hidden variables, then the results of a Bell test will be constrained in a particular, quantifiable way. If a Bell experiment is performed and the results are ''not'' thus constrained, then the hypothesized local hidden variables cannot exist. Such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Key Distribution
Quantum key distribution (QKD) is a secure communication method which implements a cryptographic protocol involving components of quantum mechanics. It enables two parties to produce a shared random secret key known only to them, which can then be used to encrypt and decrypt messages. It is often incorrectly called quantum cryptography, as it is the best-known example of a quantum cryptographic task. An important and unique property of quantum key distribution is the ability of the two communicating users to detect the presence of any third party trying to gain knowledge of the key. This results from a fundamental aspect of quantum mechanics: the process of measuring a quantum system in general disturbs the system. A third party trying to eavesdrop on the key must in some way measure it, thus introducing detectable anomalies. By using quantum superpositions or quantum entanglement and transmitting information in quantum states, a communication system can be implemented that dete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Randomness Expansion
In common usage, randomness is the apparent or actual lack of pattern or predictability in events. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. Individual random events are, by definition, unpredictable, but if the probability distribution is known, the frequency of different outcomes over repeated events (or "trials") is predictable.Strictly speaking, the frequency of an outcome will converge almost surely to a predictable value as the number of trials becomes arbitrarily large. Non-convergence or convergence to a different value is possible, but has probability zero. For example, when throwing two dice, the outcome of any particular roll is unpredictable, but a sum of 7 will tend to occur twice as often as 4. In this view, randomness is not haphazardness; it is a measure of uncertainty of an outcome. Randomness applies to concepts of chance, probability, and information entropy. The fields of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Randomness Amplification
In common usage, randomness is the apparent or actual lack of pattern or predictability in events. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. Individual random events are, by definition, unpredictable, but if the probability distribution is known, the frequency of different outcomes over repeated events (or "trials") is predictable.Strictly speaking, the frequency of an outcome will converge almost surely to a predictable value as the number of trials becomes arbitrarily large. Non-convergence or convergence to a different value is possible, but has probability zero. For example, when throwing two dice, the outcome of any particular roll is unpredictable, but a sum of 7 will tend to occur twice as often as 4. In this view, randomness is not haphazardness; it is a measure of uncertainty of an outcome. Randomness applies to concepts of chance, probability, and information entropy. The fields of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

University Of California
The University of California (UC) is a public land-grant research university system in the U.S. state of California. The system is composed of the campuses at Berkeley, Davis, Irvine, Los Angeles, Merced, Riverside, San Diego, San Francisco, Santa Barbara, and Santa Cruz, along with numerous research centers and academic abroad centers. The system is the state's land-grant university. Major publications generally rank most UC campuses as being among the best universities in the world. Six of the campuses, Berkeley, Davis, Irvine, Los Angeles, Santa Barbara, and San Diego are considered Public Ivies, making California the state with the most universities in the nation to hold the title. UC campuses have large numbers of distinguished faculty in almost every academic discipline, with UC faculty and researchers having won 71 Nobel Prizes as of 2021. The University of California currently has 10 campuses, a combined student body of 285,862 students, 24,400 faculty membe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Renato Renner
Renato Renner (born 11 December 1974) is a Swiss professor for Theoretical Physics at the Swiss Federal Institute of Technology (ETH) in Zurich, where he is head of the Research Group for Quantum Information Theory. His research interests include Quantum Information and Computation, the Foundations of Quantum Physics and Quantum thermodynamics. Education and career Renner was born 11 December, 1974 in Lucerne, Switzerland, where he received his high school degree in 1994 from Kantonsschule. He then went to study physics at the Swiss Federal Institute of Technology in Lausanne (EPFL) and continued his education at the Swiss Federal Institute of Technology (ETH) in Zurich, where he graduated in theoretical physics. Renner then joined ETH’s department of Computer Science as a Ph.D. student, where he worked in the field of Quantum Cryptography and specialized in the ''Security of Quantum Key Distribution,'' which became the title of his doctoral thesis in 2005. He continued ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]