Derived Tensor Product
   HOME
*





Derived Tensor Product
In algebra, given a differential graded algebra ''A'' over a commutative ring ''R'', the derived tensor product functor is :- \otimes_A^ - : D(\mathsf_A) \times D(_A \mathsf) \to D(_R \mathsf) where \mathsf_A and _A \mathsf are the categories of right ''A''-modules and left ''A''-modules and ''D'' refers to the homotopy category (i.e., derived category). By definition, it is the left derived functor of the tensor product functor - \otimes_A - : \mathsf_A \times _A \mathsf \to _R \mathsf. Derived tensor product in derived ring theory If ''R'' is an ordinary ring and ''M'', ''N'' right and left modules over it, then, regarding them as discrete spectra, one can form the smash product of them: :M \otimes_R^L N whose ''i''-th homotopy is the ''i''-th Tor: :\pi_i (M \otimes_R^L N) = \operatorname^R_i(M, N). It is called the derived tensor product of ''M'' and ''N''. In particular, \pi_0 (M \otimes_R^L N) is the usual tensor product of modules ''M'' and ''N'' over ''R''. Geometrically, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Graded Algebra
In mathematics, in particular abstract algebra and topology, a differential graded algebra is a graded associative algebra with an added chain complex structure that respects the algebra structure. __TOC__ Definition A differential graded algebra (or DG-algebra for short) ''A'' is a graded algebra equipped with a map d\colon A \to A which has either degree 1 (cochain complex convention) or degree −1 (chain complex convention) that satisfies two conditions: A more succinct way to state the same definition is to say that a DG-algebra is a monoid object in the monoidal category of chain complexes. A DG morphism between DG-algebras is a graded algebra homomorphism which respects the differential ''d''. A differential graded augmented algebra (also called a DGA-algebra, an augmented DG-algebra or simply a DGA) is a DG-algebra equipped with a DG morphism to the ground ring (the terminology is due to Henri Cartan). ''Warning:'' some sources use the term ''DGA'' for a DG-alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Definition and first examples Definition A ''ring'' is a set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under multiplication, where multiplication distributes over addition; i.e., a \cdot \left(b + c\right) = \left(a \cdot b\right) + \left(a \cdot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Category Of Modules
In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the ring of integers Z, it is the same thing as the category of abelian groups. The category of right modules is defined in a similar way. Note: Some authors use the term module category for the category of modules. This term can be ambiguous since it could also refer to a category with a monoidal-category action. Properties The categories of left and right modules are abelian categories. These categories have enough projectives and enough injectives. Mitchell's embedding theorem states every abelian category arises as a full subcategory of the category of modules. Projective limits and inductive limits exist in the categories of left and right modules. Over a commutative ring, together with the tensor product of modules ⊗, the category of mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derived Category
In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction proceeds on the basis that the objects of ''D''(''A'') should be chain complexes in ''A'', with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences. The development of the derived category, by Alexander Grothendieck and his student Jean-Louis Verdier shortly after 1960, now appears as one terminal point in the explosive development of homological algebra in the 1950s, a decade in which it had made remarkab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tensor Product Of Modules
In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps (e.g. multiplication) to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology, algebraic geometry, operator algebras and noncommutative geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. It allows the study of bilinear or multilinear operations via linear operations. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Intersection Product
In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form. There is yet an ongoing development of intersection theory. Currently the main focus is on: virtual fundamental cycles, quantum intersection rings, Gromov-Witten theory and the extension of intersection theory from schemes to stacks. Topological intersection form For a connected oriented manifold of dimension the intersection form is defined on the -th cohomology group (what is usually called the 'middle dimension') by the evaluation of the cup product on the fundamental class in . Stated precisely, there is a bilinear form :\lambda_M \colon H^n(M,\partial M) \times H^n(M,\partial M)\to \mathbf given by :\lambda ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derived Scheme
In algebraic geometry, a derived scheme is a pair (X, \mathcal) consisting of a topological space ''X'' and a sheaf \mathcal either of simplicial commutative rings or of commutative ring spectra on ''X'' such that (1) the pair (X, \pi_0 \mathcal) is a scheme and (2) \pi_k \mathcal is a quasi-coherent \pi_0 \mathcal-module. The notion gives a homotopy-theoretic generalization of a scheme. A derived stack is a stacky generalization of a derived scheme. Differential graded scheme Over a field of characteristic zero, the theory is closely related to that of a differential graded scheme. By definition, a differential graded scheme is obtained by gluing affine differential graded schemes, with respect to étale topology. It was introduced by Maxim Kontsevich "as the first approach to derived algebraic geometry." and was developed further by Mikhail Kapranov and Ionut Ciocan-Fontanine. Connection with differential graded rings and examples Just as affine algebraic geometry is equival ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scheme-theoretic Intersection
In algebraic geometry, the scheme-theoretic intersection of closed subschemes ''X'', ''Y'' of a scheme ''W'' is X \times_W Y, the fiber product of the closed immersions X \hookrightarrow W, Y \hookrightarrow W. It is denoted by X \cap Y. Locally, ''W'' is given as \operatorname R for some ring ''R'' and ''X'', ''Y'' as \operatorname(R/I), \operatorname(R/J) for some ideals ''I'', ''J''. Thus, locally, the intersection X \cap Y is given as :\operatorname(R/(I+J)). Here, we used R/I \otimes_R R/J \simeq R/(I + J) (for this identity, see tensor product of modules#Examples.) Example: Let X \subset \mathbb^n be a projective variety with the homogeneous coordinate ring ''S/I'', where ''S'' is a polynomial ring. If H = \ \subset \mathbb^n is a hypersurface defined by some homogeneous polynomial ''f'' in ''S'', then : X \cap H = \operatorname(S/(I, f)). If ''f'' is linear (deg = 1), it is called a hyperplane section. See also: Bertini's theorem. Now, a scheme-theoretic intersection may ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]