Derangements
   HOME
*



picture info

Derangements
In combinatorial mathematics, a derangement is a permutation of the elements of a set, such that no element appears in its original position. In other words, a derangement is a permutation that has no fixed points. The number of derangements of a set of size ''n'' is known as the subfactorial of ''n'' or the ''n-''th derangement number or ''n-''th de Montmort number. Notations for subfactorials in common use include !''n,'' ''Dn'', ''dn'', or ''n''¡. For ''n'' > 0, the subfactorial !''n'' equals the nearest integer to ''n''!/''e,'' where ''n''! denotes the factorial of ''n'' and ''e'' is Euler's number. The problem of counting derangements was first considered by Pierre Raymond de Montmort in 1708; he solved it in 1713, as did Nicholas Bernoulli at about the same time. Example Suppose that a professor gave a test to 4 students – A, B, C, and D – and wants to let them grade each other's tests. Of course, no student should grade their own test. How many ways could the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Derangements
In combinatorial mathematics, a derangement is a permutation of the elements of a set, such that no element appears in its original position. In other words, a derangement is a permutation that has no fixed points. The number of derangements of a set of size ''n'' is known as the subfactorial of ''n'' or the ''n-''th derangement number or ''n-''th de Montmort number. Notations for subfactorials in common use include !''n,'' ''Dn'', ''dn'', or ''n''¡. For ''n'' > 0, the subfactorial !''n'' equals the nearest integer to ''n''!/''e,'' where ''n''! denotes the factorial of ''n'' and ''e'' is Euler's number. The problem of counting derangements was first considered by Pierre Raymond de Montmort in 1708; he solved it in 1713, as did Nicholas Bernoulli at about the same time. Example Suppose that a professor gave a test to 4 students – A, B, C, and D – and wants to let them grade each other's tests. Of course, no student should grade their own test. How many ways could the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Inclusion–exclusion Principle
In combinatorics, a branch of mathematics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as : , A \cup B, = , A, + , B, - , A \cap B, where ''A'' and ''B'' are two finite sets and , ''S'', indicates the cardinality of a set ''S'' (which may be considered as the number of elements of the set, if the set is finite). The formula expresses the fact that the sum of the sizes of the two sets may be too large since some elements may be counted twice. The double-counted elements are those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection. The inclusion-exclusion principle, being a generalization of the two-set case, is perhaps more clearly seen in the case of three sets, which for the sets ''A'', ''B'' and ''C'' is given by :, A \cup B \cup C, = , A, + , B, + , C, - , A \cap B, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE