HOME
*





Dutch Book
In gambling, a Dutch book or lock is a set of odds and bets, established by the bookmaker, that ensures that the bookmaker will profit—at the expense of the gamblers—regardless of the outcome of the event (a horse race, for example) on which the gamblers bet. It is associated with probabilities implied by the odds not being coherent. In economics, the term usually refers to a sequence of trades that would leave one party strictly worse off and another strictly better off. Typical assumptions in consumer choice theory rule out the possibility that anyone can be Dutch-booked. In philosophy it is used to explore degrees of certainty of beliefs. There is no agreement on the etymology of the term.Hajek, Alan ''Dutch Book Arguments'', Chapter 7 in The Oxford Handbook of Rational and Social Choice, ed. Paul Anand, Prasanta Pattanaik, and Clemens Puppe, 173-195, Oxford University Press Gambling The main point of the Dutch book argument is to show that rational people must have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gambling
Gambling (also known as betting or gaming) is the wagering of something of value ("the stakes") on a random event with the intent of winning something else of value, where instances of strategy are discounted. Gambling thus requires three elements to be present: consideration (an amount wagered), risk (chance), and a prize. The outcome of the wager is often immediate, such as a single roll of dice, a spin of a roulette wheel, or a horse crossing the finish line, but longer time frames are also common, allowing wagers on the outcome of a future sports contest or even an entire sports season. The term "gaming" in this context typically refers to instances in which the activity has been specifically permitted by law. The two words are not mutually exclusive; ''i.e.'', a "gaming" company offers (legal) "gambling" activities to the public and may be regulated by one of many gaming control boards, for example, the Nevada Gaming Control Board. However, this distinction is not u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bruno De Finetti
Bruno de Finetti (13 June 1906 – 20 July 1985) was an Italian probabilist statistician and actuary, noted for the "operational subjective" conception of probability. The classic exposition of his distinctive theory is the 1937 "La prévision: ses lois logiques, ses sources subjectives," which discussed probability founded on the coherence of betting odds and the consequences of exchangeability. Life De Finetti was born in Innsbruck, Austria, and studied mathematics at Politecnico di Milano. He graduated in 1927 writing his thesis under the supervision of Giulio Vivanti. After graduation, he worked as an actuary and a statistician at ''Istituto Nazionale di Statistica'' ( National Institute of Statistics) in Rome and, from 1931, the Trieste insurance company Assicurazioni Generali. In 1936 he won a competition for Chair of Financial Mathematics and Statistics, but was not nominated due to a fascist law barring access to unmarried candidates; he was appointed as ordinary profess ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Applied Probability
Applied probability is the application of probability theory to statistical problems and other scientific and engineering domains. Scope Much research involving probability is done under the auspices of applied probability. However, while such research is motivated (to some degree) by applied problems, it is usually the mathematical aspects of the problems that are of most interest to researchers (as is typical of applied mathematics in general). Applied probabilists are particularly concerned with the application of stochastic processes, and probability more generally, to the natural, applied and social sciences, including biology, physics (including astronomy), chemistry, medicine, computer science and information technology, and economics. Another area of interest is in engineering: particularly in areas of uncertainty, risk management, probabilistic design, and Quality assurance. See also *Areas of application: **Ruin theory **Statistical physics **Stoichiometry and modelli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematics Of Bookmaking
In gambling parlance, making a book is the practice of laying bets on the various possible outcomes of a single event. The phrase originates from the practice of recording such wagers in a hard-bound ledger (the 'book') and gives the English language the term bookmaker for the person laying the bets and thus 'making the book'. Sidney 2003, pp. 13, 36 Making a 'book' (and the notion of overround) A bookmaker strives to accept bets on the outcome of an event in the right proportions in order to make a profit regardless of which outcome prevails. See Dutch book and coherence (philosophical gambling strategy). This is achieved primarily by adjusting what are determined to be the true odds of the various outcomes of an event in a downward fashion (i.e. the bookmaker will pay out using his actual odds, an amount which is less than the true odds would have paid, thus ensuring a profit). The odds quoted for a particular event may be fixed but are more likely to fluctuate in or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dutching
In gambling, Dutching is sharing the risk of losing across a number of runners by backing more than one selection in a race or event. One needs to calculate the correct stake to place on each selection so that the return is the same if any of them wins. Although not foolproof, because handicapping is still involved, there have been successful bettors throughout history who have applied this system. This is not to be confused with what constitutes a Dutch book which is when a bookmaker goes overbroke (the opposite to overround). It is thought the strategy behind Dutching was originally conceived and employed by Arthur Flegenheimer (also known as Dutch Schultz) alongside various rackets he had running at the racetrack. The system has since taken his name. The strategy can pay dividends when gamblers successfully reduce the potential winners of an event to a select few from the field or when information about runners not expected to perform well does not reach the market (so as to af ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cobra Effect
A perverse incentive is an incentive that has an unintended and undesirable result that is contrary to the intentions of its designers. The cobra effect is the most direct kind of perverse incentive, typically because the incentive unintentionally rewards people for making the issue worse. The term is used to illustrate how incorrect stimulation in economics and politics can cause unintended consequences. Examples of perverse incentives The original cobra effect The term ''cobra effect'' was coined by economist Horst Siebert based on an anecdote of an occurrence in India during British rule. The British government, concerned about the number of venomous cobras in Delhi, offered a bounty for every dead cobra. Initially, this was a successful strategy; large numbers of snakes were killed for the reward. Eventually, however, enterprising people began to breed cobras for the income. When the government became aware of this, the reward program was scrapped. When cobra breeders s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bayesian Epistemology
Bayesian epistemology is a formal approach to various topics in epistemology that has its roots in Thomas Bayes' work in the field of probability theory. One advantage of its formal method in contrast to traditional epistemology is that its concepts and theorems can be defined with a high degree of precision. It is based on the idea that beliefs can be interpreted as Subjective probability, subjective probabilities. As such, they are subject to the laws of probability theory, which act as the norms of rationality. These norms can be divided into static constraints, governing the rationality of beliefs at any moment, and dynamic constraints, governing how rational agents should change their beliefs upon receiving new evidence. The most characteristic Bayesian expression of these principles is found in the form of Dutch books, which illustrate irrationality in agents through a series of bets that lead to a loss for the agent no matter which of the probabilistic events occurs. Bayesian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arbitrage Betting
Betting arbitrage ("sure bets", sports arbitrage) is an example of arbitrage arising on betting markets due to either bookmakers' differing opinions on event outcomes or errors. When conditions allow, by placing one bet per each outcome with different betting companies, the bettor can make a profit regardless of the outcome. Mathematically, arbitrage occurs when there are a set of odds, which represent all mutually exclusive outcomes that cover all state space possibilities (i.e. all outcomes) of an event, whose implied probabilities add up to less than 1. In the bettors' slang an arbitrage is often referred to as an arb; people who take advantage of these arbitrage opportunities are called arbers. Background Arbitrage betting involves relatively large sums of money, given that 98% of arbitrage opportunities return less than 1.2%. The practice is usually detected quickly by bookmakers, who typically hold an unfavorable view of it, and in the past this could result in half of an a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Without Loss Of Generality
''Without loss of generality'' (often abbreviated to WOLOG, WLOG or w.l.o.g.; less commonly stated as ''without any loss of generality'' or ''with no loss of generality'') is a frequently used expression in mathematics. The term is used to indicate the assumption that follows is chosen arbitrarily, narrowing the premise to a particular case, but does not affect the validity of the proof in general. The other cases are sufficiently similar to the one presented that proving them follows by essentially the same logic. As a result, once a proof is given for the particular case, it is trivial to adapt it to prove the conclusion in all other cases. In many scenarios, the use of "without loss of generality" is made possible by the presence of symmetry. For example, if some property ''P''(''x'',''y'') of real numbers is known to be symmetric in ''x'' and ''y'', namely that ''P''(''x'',''y'') is equivalent to ''P''(''y'',''x''), then in proving that ''P''(''x'',''y'') holds for every ''x'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intransitive Preference
In mathematics, intransitivity (sometimes called nontransitivity) is a property of binary relations that are not transitive relations. This may include any relation that is not transitive, or the stronger property of antitransitivity, which describes a relation that is never transitive. Intransitivity A relation is transitive if, whenever it relates some A to some B, and that B to some C, it also relates that A to that C. Some authors call a relation if it is not transitive, that is, (if the relation in question is named R) \lnot\left(\forall a, b, c: a R b \land b R c \implies a R c\right). This statement is equivalent to \exists a,b,c : a R b \land b R c \land \lnot(a R c). For instance, in the food chain, wolves feed on deer, and deer feed on grass, but wolves do not feed on grass. Thus, the relation among life forms is intransitive, in this sense. Another example that does not involve preference loops arises in freemasonry: in some instances lodge A recognizes lodge B, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axioms Of Probability
The Kolmogorov axioms are the foundations of probability theory introduced by Russian mathematician Andrey Kolmogorov in 1933. These axioms remain central and have direct contributions to mathematics, the physical sciences, and real-world probability cases. An alternative approach to formalising probability, favoured by some Bayesians, is given by Cox's theorem. Axioms The assumptions as to setting up the axioms can be summarised as follows: Let (\Omega, F, P) be a measure space with P(E) being the probability of some event E'','' and P(\Omega) = 1. Then (\Omega, F, P) is a probability space, with sample space \Omega, event space F and probability measure P. First axiom The probability of an event is a non-negative real number: :P(E)\in\mathbb, P(E)\geq 0 \qquad \forall E \in F where F is the event space. It follows that P(E) is always finite, in contrast with more general measure theory. Theories which assign negative probability relax the first axiom. Second axiom This ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]