HOME
*





Dimensional Deconstruction
In theoretical physics, dimensional deconstruction is a method to construct ''4''-dimensional theories that behave as higher-dimensional theories in a certain range of higher energies. The resulting theory is a gauge theory whose gauge group is a direct product of many copies of the same group; each copy may be interpreted as the gauge group located at a particular point along a new, discrete, "deconstructed" ''(d+1)''st dimension. The spectrum of matter fields is a set of bifundamental representations expressed by a quiver diagram that is analogous to lattices in lattice gauge theory. "Deconstruction" in physics was introduced by Nima Arkani-Hamed, Andy Cohen and Howard Georgi, and independently by Christopher T. Hill, Stefan Pokorski and Jing Wang. Deconstruction is a lattice approximation to the real space of extra dimensions, while maintaining the full gauge symmetries and yields the low energy effective description of the physics. This leads to a rationale for extensions of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.There is some debate as to whether or not theoretical physics uses mathematics to build intuition and illustrativeness to extract physical insight (especially when normal experience fails), rather than as a tool in formalizing theories. This links to the question of it using mathematics in a less formally rigorous, and more intuitive or heuristic way than, say, mathematical physics. For example, while developing special relativity, Albert Einstein was concerned wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauge Theory
In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups). The term ''gauge'' refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called ''gauge transformations'', form a Lie group—referred to as the ''symmetry group'' or the ''gauge group'' of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the ''gauge field''. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called ''gauge invariance''). When such a theory is quantized, the quanta of the gauge fields are called '' gauge bosons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauge Group
In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations ( Lie groups). The term ''gauge'' refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called ''gauge transformations'', form a Lie group—referred to as the '' symmetry group'' or the ''gauge group'' of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the ''gauge field''. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called ''gauge invariance''). When such a theory is quantized, the quanta of the gauge fields are called '' gauge bo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Direct Product Of Groups
In mathematics, specifically in group theory, the direct product is an operation that takes two groups and and constructs a new group, usually denoted . This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics. In the context of abelian groups, the direct product is sometimes referred to as the direct sum, and is denoted G \oplus H. Direct sums play an important role in the classification of abelian groups: according to the fundamental theorem of finite abelian groups, every finite abelian group can be expressed as the direct sum of cyclic groups. Definition Given groups (with operation ) and (with operation ), the direct product is defined as follows: The resulting algebraic object satisfies the axioms for a group. Specifically: ;Associativity: The binary operation on is associative. ;Identity: The direct product has an identity element, namely , where is the identity e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bifundamental Representation
In mathematics and theoretical physics, a bifundamental representation is a representation obtained as a tensor product of two fundamental or antifundamental representations. For example, the ''MN''-dimensional representation (''M'',''N'') of the group :SU(M) \times SU(N) is a bifundamental representation. These representations occur in quiver diagram In theoretical physics, a quiver diagram is a graph representing the matter content of a gauge theory that describes D-branes on orbifolds. Quiver diagrams may also be used to described \mathcal = 2 supersymmetric gauge theories in four dimens ...s. Abstract algebra {{algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quiver Diagram
In theoretical physics, a quiver diagram is a graph representing the matter content of a gauge theory that describes D-branes on orbifolds. Quiver diagrams may also be used to described \mathcal = 2 supersymmetric gauge theories in four dimensions. Each node of the graph corresponds to a factor ''U''(''N'') of the gauge group, and each link represents a field in the bifundamental representation :(M,\bar). The relevance of quiver diagrams for string theory was pointed out and studied by Michael Douglas and Greg Moore. While string theorists use the words ''quiver diagram'', many of their colleagues in particle physics call these diagrams ''mooses''. Definition For convenience, consider the supersymmetric \mathcal =1 gauge theory in four-dimensional spacetime. The quiver gauge theory is given by the following data: * Finite quiver Q * Each vertex v\in \operatorname (Q) corresponds to a compact Lie group G_. This can be the unitary group U(N), the special unitary group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice Gauge Theory
In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice. Gauge theories are important in particle physics, and include the prevailing theories of elementary particles: quantum electrodynamics, quantum chromodynamics (QCD) and particle physics' Standard Model. Non-perturbative gauge theory calculations in continuous spacetime formally involve evaluating an infinite-dimensional path integral, which is computationally intractable. By working on a discrete spacetime, the path integral becomes finite-dimensional, and can be evaluated by stochastic simulation techniques such as the Monte Carlo method. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum gauge theory is recovered. Basics In lattice gauge theory, the spacetime is Wick rotated into Euclidean space and discretized into a lattice with sites separated by distance a and connected by links. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nima Arkani-Hamed
Nima Arkani-Hamed ( fa, نیما ارکانی حامد; born April 5, 1972) is an American-Canadian "Curriculum Vita, updated 4-17-15"
sns.ias.edu; accessed December 4, 2015.
of Iranian descent, with interests in , quantum fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Andrew Cohen (physicist)
Andrew or Andy Cohen may refer to: Media * Andy Cohen (born 1968), American television executive and pop culture blogger * Andrew J. Cohen, American screenwriter and film director * Andrew Cohen (filmmaker) (born 1965), American independent filmmaker and journalist Politics * Andrew Cohen (colonial administrator) (1909–1968), former governor of Uganda * Andrew Cohen (politician) (born 1969), American politician in New York City Sports * Andy Cohen (baseball) (1904–1988), Major League second baseman * Andrew Cohen (footballer) (born 1981), Maltese Other * Andrew Cohen (journalist) (born 1955), Canadian * Andrew Cohen (spiritual teacher) (born 1955), American * Andrew Cohen (poker player) (born c. 1969), American * Andrew Cohen (businessman) (born 1977), Australian entrepreneur * Andy Cohen (architect), American Co-CEO of Gensler * Andy Cohen, guitarist for the band Silkworm (band), Silkworm See also * Andrew (other) * Andy (other) * Cohen (disa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Howard Georgi
Howard Mason Georgi III (born January 6, 1947) is an American theoretical physicist and the Mallinckrodt Professor of Physics and Harvard College Professor at Harvard University. He is also Director of Undergraduate Studies in Physics. He was Co-Master and then Faculty Dean of Leverett House with his wife, Ann Blake Georgi, from 1998 to 2018. His early work was in Grand Unification and gauge coupling unification within SU(5) and SO(10) groups (see Georgi–Glashow model). Education Georgi graduated from Pingry School in 1964, graduated from Harvard College in 1967 and obtained his Ph.D. from Yale University in 1971. He was Junior Fellow in the Harvard Society of Fellows from 1973–76 and a Senior Fellow from 1982-1998. Career In early 1974 Georgi (with Sheldon Glashow) published the first grand unified theory (GUT), the Minimal SU(5) Georgi–Glashow model. Georgi independently (alongside Harald Fritzsch and Peter Minkowski) published a minimal SO(10) GUT model in 1974. Geo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Christopher T
Christopher is the English version of a Europe-wide name derived from the Greek name Χριστόφορος (''Christophoros'' or '' Christoforos''). The constituent parts are Χριστός (''Christós''), "Christ" or "Anointed", and φέρειν (''phérein''), "to bear"; hence the "Christ-bearer". As a given name, 'Christopher' has been in use since the 10th century. In English, Christopher may be abbreviated as "Chris", "Topher", and sometimes " Kit". It was frequently the most popular male first name in the United Kingdom, having been in the top twenty in England and Wales from the 1940s until 1995, although it has since dropped out of the top 100. The name is most common in England and not so common in Wales, Scotland, or Ireland. People with the given name Antiquity and Middle Ages * Saint Christopher (died 251), saint venerated by Catholics and Orthodox Christians * Christopher (Domestic of the Schools) (fl. 870s), Byzantine general * Christopher Lekapenos (died 931) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topcolor
Topcolor is a model in theoretical physics, of dynamical electroweak symmetry breaking in which the top quark and anti-top quark form a composite Higgs boson by a new force arising from massive "top gluons". The solution to composite Higgs models was actually anticipated in 1981, and found to be the Infrared fixed point for the top quark mass. Analogy with known physics The composite Higgs boson made from a bound pair of top-anti-top quarks is analogous to the phenomenon of superconductivity, where Cooper pairs are formed by the exchange of phonons. The pairing dynamics and its solution was treated in the Bardeen-Hill-Lindner model. The original topcolor naturally involved an extension of the standard model color gauge group to a product group SU(3)×SU(3)×SU(3)×... One of the gauge groups contains the top and bottom quarks, and has a sufficiently large coupling constant to cause the condensate to form. The topcolor model anticipates the idea of dimensional deconstruction and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]