Derived Affine Scheme
In algebraic geometry, a derived scheme is a homotopy-theoretic generalization of a scheme in which classical commutative rings are replaced with derived versions such as differential graded algebras, commutative simplicial rings, or commutative ring spectra. From the functor of points point-of-view, a derived scheme is a sheaf ''X'' on the category of simplicial commutative rings which admits an open affine covering \. From the locally ringed space point-of-view, a derived scheme is a pair (X, \mathcal) consisting of a topological space ''X'' and a sheaf \mathcal either of simplicial commutative rings or of commutative ring spectra on ''X'' such that (1) the pair (X, \pi_0 \mathcal) is a scheme and (2) \pi_k \mathcal is a quasi-coherent \pi_0 \mathcal- module. A derived stack is a stacky generalization of a derived scheme. Differential graded scheme Over a field of characteristic zero, the theory is closely related to that of a differential graded scheme. By definition ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
étale Topology
In algebraic geometry, the étale topology is a Grothendieck topology on the category of schemes which has properties similar to the Euclidean topology, but unlike the Euclidean topology, it is also defined in positive characteristic. The étale topology was originally introduced by Alexander Grothendieck to define étale cohomology, and this is still the étale topology's most well-known use. Definitions For any scheme ''X'', let Ét(''X'') be the category of all étale morphisms from a scheme to ''X''. This is the analog of the category of open subsets of ''X'' (that is, the category whose objects are varieties and whose morphisms are open immersions). Its objects can be informally thought of as étale open subsets of ''X''. The intersection of two objects corresponds to their fiber product over ''X''. Ét(''X'') is a large category, meaning that its objects do not form a set. An étale presheaf on ''X'' is a contravariant functor from Ét(''X'') to the category of sets. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cotangent Complex
In mathematics, the cotangent complex is a common generalisation of the cotangent sheaf, normal bundle and virtual tangent bundle of a map of geometric spaces such as manifolds or schemes. If f: X \to Y is a morphism of geometric or algebraic objects, the corresponding cotangent complex \mathbf_^\bullet can be thought of as a universal "linearization" of it, which serves to control the deformation theory of f. It is constructed as an object in a certain derived category of sheaves on X using the methods of homotopical algebra. Restricted versions of cotangent complexes were first defined in various cases by a number of authors in the early 1960s. In the late 1960s, Michel André and Daniel Quillen independently came up with the correct definition for a morphism of commutative rings, using simplicial methods to make precise the idea of the cotangent complex as given by taking the (non-abelian) left derived functor of Kähler differentials. Luc Illusie then globalized this d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Model Category
A model is an informative representation of an object, person, or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin , . Models can be divided into physical models (e.g. a ship model or a fashion model) and abstract models (e.g. a set of mathematical equations describing the workings of the atmosphere for the purpose of weather forecasting). Abstract or conceptual models are central to philosophy of science. In scholarly research and applied science, a model should not be confused with a theory: while a model seeks only to represent reality with the purpose of better understanding or predicting the world, a theory is more ambitious in that it claims to be an explanation of reality. Types of model ''Model'' in specific contexts As a noun, ''model'' has specific meanings in certain fields, derived from its original meaning of "structural design or layout": * Model (art), ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Derived Tensor Product
In algebra, given a differential graded algebra ''A'' over a commutative ring ''R'', the derived tensor product functor is :- \otimes_A^ - : D(\mathsf_A) \times D(_A \mathsf) \to D(_R \mathsf) where \mathsf_A and _A \mathsf are the categories of right ''A''-modules and left ''A''-modules and ''D'' refers to the homotopy category (i.e., derived category). By definition, it is the left derived functor of the tensor product functor - \otimes_A - : \mathsf_A \times _A \mathsf \to _R \mathsf. Derived tensor product in derived ring theory If ''R'' is an ordinary ring and ''M'', ''N'' right and left modules over it, then, regarding them as discrete spectra, one can form the smash product of them: :M \otimes_R^L N whose ''i''-th homotopy is the ''i''-th Tor: :\pi_i (M \otimes_R^L N) = \operatorname^R_i(M, N). It is called the derived tensor product of ''M'' and ''N''. In particular, \pi_0 (M \otimes_R^L N) is the usual tensor product of modules ''M'' and ''N'' over ''R''. Geometrically, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
étale Spectrum
In algebraic geometry, a branch of mathematics, the étale spectrum of a commutative ring or an E-infinity ring, E∞-ring, denoted by Specét or Spét, is an analog of the prime spectrum Spec of a commutative ring that is obtained by replacing Zariski topology with étale topology. The precise definition depends on one's formalism. But the idea of the definition itself is simple. The usual prime spectrum Spec enjoys the relation: for a scheme (mathematics), scheme (''S'', ''O''''S'') and a commutative ring ''A'', :\operatorname(S, \operatorname(A)) \simeq \operatorname(A, \Gamma(S, \mathcal_S)) where Hom on the left is for morphism of schemes, morphisms of schemes and Hom on the right ring homomorphisms. This is to say Spec is the right adjoint to the global section functor (S, \mathcal_S) \mapsto \Gamma(S, \mathcal_S). So, roughly, one can (and typically does) simply define the étale spectrum Spét to be the right adjoint to the global section functor on the category of "spaces" wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Koszul Complex
In mathematics, the Koszul complex was first introduced to define a cohomology theory for Lie algebras, by Jean-Louis Koszul (see Lie algebra cohomology). It turned out to be a useful general construction in homological algebra. As a tool, its homology can be used to tell when a set of elements of a (local) ring is an Regular sequence#Definitions, M-regular sequence, and hence it can be used to prove basic facts about the Depth (ring theory), depth of a module or ideal which is an algebraic notion of dimension that is related to but different from the geometric notion of Krull dimension. Moreover, in certain circumstances, the complex is the complex of Hilbert's syzygy theorem#Syzygies (relations), syzygies, that is, it tells you the relations between generators of a module, the relations between these relations, and so forth. Definition Let ''A'' be a commutative ring and ''s: Ar → A'' an ''A''-linear map. Its Koszul complex ''Ks'' is : \bigwedge^r A^r\ \to\ \bigwedge^A^r\ \ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Derived Algebraic Geometry
Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over \mathbb), simplicial commutative rings or E_-ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness (e.g., Tor) of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements. Derived algebraic geometry can be thought of as an extension of this idea, and provides natural settings for intersection theory (or motivic homotopy theory) of singular algebraic varieties and cotangent complexes in deformation theory (cf. J. Francis), among the other applications. Introduction Basic objects of study in the field are derived schemes and derived stacks. The oft-cited motivation is Serre's intersection formula. In the usual formulation, the formula involves the Tor functor and thus, un ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and p-adic number, ''p''-adic integers. Commutative algebra is the main technical tool of algebraic geometry, and many results and concepts of commutative algebra are strongly related with geometrical concepts. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. Several concepts of commutative algebras have been developed in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Affine Space
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. Affine space is the setting for affine geometry. As in Euclidean space, the fundamental objects in an affine space are called '' points'', which can be thought of as locations in the space without any size or shape: zero-dimensional. Through any pair of points an infinite straight line can be drawn, a one-dimensional set of points; through any three points that are not collinear, a two-dimensional plane can be drawn; and, in general, through points in general position, a -dimensional flat or affine subspace can be drawn. Affine space is characterized by a notion of pairs of parallel lines that lie within the same plane but never meet each-other (non-parallel lines wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Maxim Kontsevich
Maxim Lvovich Kontsevich (, ; born 25 August 1964) is a Russian and French mathematician and mathematical physicist. He is a professor at the Institut des Hautes Études Scientifiques and a distinguished professor at the University of Miami. He received the Henri Poincaré Prize in 1997, the Fields Medal in 1998, the Crafoord Prize in 2008, the Shaw Prize and Breakthrough Prize in Fundamental Physics in 2012, and the Breakthrough Prize in Mathematics in 2015. Academic career and research He was born into the family of Lev Kontsevich, Soviet orientalist and author of the Kontsevich system. After ranking second in the All-Union Mathematics Olympiads, he attended Moscow State University but left without a degree in 1985 to become a researcher at the Institute for Information Transmission Problems in Moscow. While at the institute he published papers that caught the interest of the Max Planck Institute in Bonn and was invited for three months. Just before the end of his time ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |