Decidability Of First-order Theories Of The Real Numbers
   HOME
*





Decidability Of First-order Theories Of The Real Numbers
In mathematical logic, a first-order language of the real numbers is the set of all well-formed sentences of first-order logic that involve universal and existential quantifiers and logical combinations of equalities and inequalities of expressions over real variables. The corresponding first-order theory is the set of sentences that are actually true of the real numbers. There are several different such theories, with different expressive power, depending on the primitive operations that are allowed to be used in the expression. A fundamental question in the study of these theories is whether they are decidable: that is, is there an algorithm that can take a sentence as input and produce as output an answer "yes" or "no" to the question of whether the sentence is true in the theory. The theory of real closed fields is the theory in which the primitive operations are multiplication and addition; this implies that, in this theory, the only numbers that can be defined are the real ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tarski–Seidenberg Theorem
In mathematics, the Tarski–Seidenberg theorem states that a set in (''n'' + 1)-dimensional space defined by polynomial equations and inequalities can be projected down onto ''n''-dimensional space, and the resulting set is still definable in terms of polynomial identities and inequalities. The theorem—also known as the Tarski–Seidenberg projection property—is named after Alfred Tarski and Abraham Seidenberg. It implies that quantifier elimination is possible over the reals, that is that every formula constructed from polynomial equations and inequalities by logical connectives (''or''), (''and''), (''not'') and quantifiers (''for all''), (''exists'') is equivalent to a similar formula without quantifiers. An important consequence is the decidability of the theory of real-closed fields. Although the original proof of the theorem was constructive, the resulting algorithm has a computational complexity that is too high for using the method on a comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal Theories Of Arithmetic
Formal, formality, informal or informality imply the complying with, or not complying with, some set of requirements (forms, in Ancient Greek). They may refer to: Dress code and events * Formal wear, attire for formal events * Semi-formal attire, attire for semi-formal events * Informal attire, more controlled attire than casual but less than formal * Formal (university), official university dinner, ball or other event * School formal, official school dinner, ball or other event Logic and mathematics *Formal logic, or mathematical logic ** Informal logic, the complement, whose definition and scope is contentious *Formal fallacy, reasoning of invalid structure ** Informal fallacy, the complement *Informal mathematics, also called naïve mathematics *Formal cause, Aristotle's intrinsic, determining cause *Formal power series, a generalization of power series without requiring convergence, used in combinatorics *Formal calculation, a calculation which is systematic, but without a r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Robustness
Robustness is the property of being strong and healthy in constitution. When it is transposed into a system, it refers to the ability of tolerating perturbations that might affect the system’s functional body. In the same line ''robustness'' can be defined as "the ability of a system to resist change without adapting its initial stable configuration". "Robustness in the small" refers to situations wherein perturbations are small in magnitude, which considers that the "small" magnitude hypothesis can be difficult to verify because "small" or "large" depends on the specific problem. Conversely, "Robustness in the large problem" refers to situations wherein no assumptions can be made about the magnitude of perturbations, which can either be small or large.C.Alippi: "Robustness Analysis" chapter in ''Intelligence for Embedded Systems.'' Springer, 2014, 283pp, . It has been discussed that robustness has two dimensions: resistance and avoidance.Durach, C.F. et al. (2015)Antecedents an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richardson's Theorem
In mathematics, Richardson's theorem establishes the undecidability of the equality of real numbers defined by expressions involving integers, , \ln 2, and exponential and sine functions. It was proved in 1968 by mathematician and computer scientist Daniel Richardson of the University of Bath. Specifically, the class of expressions for which the theorem holds is that generated by rational numbers, the number π, the number ln 2, the variable ''x'', the operations of addition, subtraction, multiplication, composition, and the sin, exp, and abs functions. For some classes of expressions (generated by other primitives than in Richardson's theorem) there exist algorithms that can determine whether an expression is zero. Statement of the theorem Richardson's theorem can be stated as follows: Let ''E'' be a set of expressions that represent \R\to\R functions. Suppose that ''E'' includes these expressions: * ''x'' (representing the identity function) * ''ex'' (representing the exp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sine Function
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle \theta, the sine and cosine functions are denoted simply as \sin \theta and \cos \theta. More generally, the definitions of sine and cosine can be extended to any real value in terms of the lengths of certain line segments in a unit circle. More modern definitions express the sine and cosine as infinite series, or as the solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers. The sine and cosine functions are commonly used to model periodic phenomena such as sound and li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schanuel's Conjecture
In mathematics, specifically transcendental number theory, Schanuel's conjecture is a conjecture made by Stephen Schanuel in the 1960s concerning the transcendence degree of certain field extensions of the rational numbers. Statement The conjecture is as follows: :Given any complex numbers that are linearly independent over the rational numbers \mathbb, the field extension \mathbb(''z''1, ..., ''z''''n'', ''e''''z''1, ..., ''e''''z''''n'') has transcendence degree at least over \mathbb. The conjecture can be found in Lang (1966). Consequences The conjecture, if proven, would generalize most known results in transcendental number theory. The special case where the numbers ''z''1,...,''z''''n'' are all algebraic is the Lindemann–Weierstrass theorem. If, on the other hand, the numbers are chosen so as to make exp(''z''1),...,exp(''z''''n'') all algebraic then one would prove that linearly independent logarithms of algebraic numbers are algebraically independent, a streng ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponential Function
The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the notion of exponentiation (repeated multiplication), but modern definitions (there are several equivalent characterizations) allow it to be rigorously extended to all real arguments, including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to opine that the exponential function is "the most important function in mathematics". The exponential function satisfies the exponentiation identity e^ = e^x e^y \text x,y\in\mathbb, which, along with the definition e = \exp(1), shows that e^n=\underbrace_ for positive i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tarski's Exponential Function Problem
In model theory, Tarski's exponential function problem asks whether the theory of the real numbers together with the exponential function is decidable. Alfred Tarski had previously shown that the theory of the real numbers (without the exponential function) is decidable. The problem The ordered real field R is a structure over the language of ordered rings ''L''or = (+,·,−, ''η''−1. Workaround Recently there are attempts at handling the theory of the real numbers with functions such as the exponential function or sine by relaxing decidability to the weaker notion of quasi-decidability. A theory is quasi-decidable if there is a procedure that decides satisfiability but that may run forever for inputs that are not robust in a certain, well-defined sense. Such a procedure exists for systems of equations in variables . References * * *{{citation, first1=Peter, last1=Franek, first2=Stefan, last2=Ratschan, first3=Piotr, last3=Zgliczynski, chapter=S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cylindrical Algebraic Decomposition
In mathematics, cylindrical algebraic decomposition (CAD) is a notion, and an algorithm to compute it, that are fundamental for computer algebra and real algebraic geometry. Given a set ''S'' of polynomials in R''n'', a cylindrical algebraic decomposition is a decomposition of R''n'' into connected semialgebraic sets called ''cells'', on which each polynomial has constant sign, either +, − or 0. To be ''cylindrical'', this decomposition must satisfy the following condition: If 1 ≤ ''k'' < ''n'' and ''π'' is the projection from R''n'' onto R''n''−''k'' consisting in removing the last ''k'' coordinates, then for every pair of cells ''c'' and ''d'', one has either ''π''(''c'') = ''π''(''d'') or ''π''(''c'') ∩ ''π''(''d'') = ∅. This implies that the images by ''π'' of the cells define a cylindrical decomposition of R''n''−''k''. The notion was introduced by

Quantifier Elimination
Quantifier elimination is a concept of simplification used in mathematical logic, model theory, and theoretical computer science. Informally, a quantified statement "\exists x such that \ldots" can be viewed as a question "When is there an x such that \ldots?", and the statement without quantifiers can be viewed as the answer to that question. One way of classifying formulas is by the amount of quantification. Formulas with less depth of quantifier alternation are thought of as being simpler, with the quantifier-free formulas as the simplest. A theory has quantifier elimination if for every formula \alpha, there exists another formula \alpha_ without quantifiers that is equivalent to it ( modulo this theory). Examples An example from high school mathematics says that a single-variable quadratic polynomial has a real root if and only if its discriminant is non-negative: :: \exists x\in\mathbb. (a\neq 0 \wedge ax^2+bx+c=0)\ \ \Longleftrightarrow\ \ a\neq 0 \wedge b^2-4ac\geq 0 He ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alfred Tarski
Alfred Tarski (, born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician and mathematician. A prolific author best known for his work on model theory, metamathematics, and algebraic logic, he also contributed to abstract algebra, topology, geometry, measure theory, mathematical logic, set theory, and analytic philosophy. Educated in Poland at the University of Warsaw, and a member of the Lwów–Warsaw school of logic and the Warsaw school of mathematics, he immigrated to the United States in 1939 where he became a naturalized citizen in 1945. Tarski taught and carried out research in mathematics at the University of California, Berkeley, from 1942 until his death in 1983. Feferman A. His biographers Anita Burdman Feferman and Solomon Feferman state that, "Along with his contemporary, Kurt Gödel, he cha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]