De Bruijn Torus
In combinatorial mathematics, a De Bruijn torus, named after Dutch mathematician Nicolaas Govert de Bruijn, is an array of symbols from an alphabet (often just 0 and 1) that contains every possible matrix of given dimensions exactly once. It is a torus because the edges are considered wraparound for the purpose of finding matrices. Its name comes from the De Bruijn sequence, which can be considered a special case where (one dimension). One of the main open questions regarding De Bruijn tori is whether a De Bruijn torus for a particular alphabet size can be constructed for a given and . It is known that these always exist when , since then we simply get the De Bruijn sequences, which always exist. It is also known that "square" tori exist whenever and even (for the odd case the resulting tori cannot be square). The smallest possible binary "square" de Bruijn torus, depicted above right, denoted as de Bruijn torus (or simply as ), contains all binary matrices. ''B''2 Apar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics is gra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nicolaas Govert De Bruijn
Nicolaas Govert (Dick) de Bruijn (; 9 July 1918 – 17 February 2012) was a Dutch mathematician, noted for his many contributions in the fields of analysis, number theory, combinatorics and logic.Nicolaas Govert de Bruijn's obituary 2012 Biography De Bruijn was born in where he attended elementary school between 1924 and 1930 and secondary school until 1934. He started studies in mathematics at in 1936 but his studies were interrupted by the outbreak of[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, unle ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Torus
In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a spindle torus. If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a ''toroid'', as in a square toroid. Real-world objects that approximate a torus of revolution include swim rings, inner tubes and ringette rings. Eyeglass lenses that combine spherical and cylindrical correction are toric lenses. A torus should not be confused with a '' solid torus'', which is formed by r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
De Bruijn Sequence
In combinatorial mathematics, a de Bruijn sequence of order ''n'' on a size-''k'' alphabet ''A'' is a cyclic sequence in which every possible length-''n'' string on ''A'' occurs exactly once as a substring (i.e., as a ''contiguous'' subsequence). Such a sequence is denoted by and has length , which is also the number of distinct strings of length ''n'' on ''A''. Each of these distinct strings, when taken as a substring of , must start at a different position, because substrings starting at the same position are not distinct. Therefore, must have ''at least'' symbols. And since has ''exactly'' symbols, De Bruijn sequences are optimally short with respect to the property of containing every string of length ''n'' at least once. The number of distinct de Bruijn sequences is :\dfrac. The sequences are named after the Dutch mathematician Nicolaas Govert de Bruijn, who wrote about them in 1946. As he later wrote, the existence of de Bruijn sequences for each order together ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
2-2-4-4-de-Bruijn-torus
The hyphen-minus is the most commonly used type of hyphen, widely used in digital documents. It is the only character that looks like a minus sign or a dash in many character sets such as ASCII or on most keyboards, so it is also used as such. The name "hyphen-minus" derives from the original ASCII standard, where it was called "hyphen(minus)". The character is referred to as a "hyphen", a "minus sign", or a "dash" according to the context where it is being used. Description In early monospaced font typewriters and character encodings, a single key/code was almost always used for hyphen, minus, various dashes, and strikethrough, since they all have a roughly similar appearance. The current Unicode Standard specifies distinct characters for a number of different dashes, an unambiguous minus sign ("Unicode minus") at code point U+2212, and various types of hyphen including the unambiguous "Unicode hyphen" at U+2010 and the hyphen-minus at U+002D. When a hyphen is called for, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Visualisation Of A (256,256;4,4) 2 De Bruijn Torus
Visualization or visualisation may refer to: *Visualization (graphics), the physical or imagining creation of images, diagrams, or animations to communicate a message * Data visualization, the graphic representation of data * Information visualization, the study of visual representations of abstract data * Music visualization, animated imagery based on a piece of music *Mental image, the experience of images without the relevant external stimuli * "Visualization", a song by Blank Banshee on the 2012 album ''Blank Banshee 0'' See also * Creative visualization (other) * Visualizer (other) * * * * Graphics * List of graphical methods, various forms of visualization * Guided imagery, a mind-body intervention by a trained practitioner * Illustration, a decoration, interpretation or visual explanation of a text, concept or process * Image, an artifact that depicts visual perception, such as a photograph or other picture * Infographics Infographics (a clippe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Square Metre
The square metre ( international spelling as used by the International Bureau of Weights and Measures) or square meter (American spelling) is the unit of area in the International System of Units (SI) with symbol m2. It is the area of a square with sides one metre in length. Adding and subtracting SI prefixes creates multiples and submultiples; however, as the unit is exponentiated, the quantities grow exponentially by the corresponding power of 10. For example, 1 kilometre is 103 (one thousand) times the length of 1 metre, but 1 square kilometre is (103)2 (106, one million) times the area of 1 square metre, and 1 cubic kilometre is (103)3 (109, one billion) cubic metres. SI prefixes applied The square metre may be used with all SI prefixes used with the metre. Unicode characters Unicode has several characters used to represent metric area units, but these are for compatibility with East Asian character encodings and are meant to be used in new documents. * * * * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exabyte
The byte is a unit of digital information that most commonly consists of eight bits. Historically, the byte was the number of bits used to encode a single character of text in a computer and for this reason it is the smallest addressable unit of memory in many computer architectures. To disambiguate arbitrarily sized bytes from the common 8-bit definition, network protocol documents such as The Internet Protocol () refer to an 8-bit byte as an octet. Those bits in an octet are usually counted with numbering from 0 to 7 or 7 to 0 depending on the bit endianness. The first bit is number 0, making the eighth bit number 7. The size of the byte has historically been hardware-dependent and no definitive standards existed that mandated the size. Sizes from 1 to 48 bits have been used. The six-bit character code was an often-used implementation in early encoding systems, and computers using six-bit and nine-bit bytes were common in the 1960s. These systems often had memory words ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Square Kilometre
Square kilometre ( International spelling as used by the International Bureau of Weights and Measures) or square kilometer (American spelling), symbol km2, is a multiple of the square metre, the SI unit of area or surface area. 1 km2 is equal to: * 1,000,000 square metres (m2) * 100 hectares (ha) It is also approximately equal to: * 0.3861 square miles * 247.1 acres Conversely: *1 m2 = 0.000001 (10−6) km2 *1 hectare = 0.01 (10−2) km2 *1 square mile = *1 acre = about The symbol "km2" means (km)2, square kilometre or kilometre squared and not k(m2), kilo–square metre. For example, 3 km2 is equal to = 3,000,000 m2, not 3,000 m2. Examples of areas of 1 square kilometre Topographical Map grids Topographical map grids are worked out in metres, with the grid lines being 1,000 metres apart. * 1:100,000 maps are divided into squares representing 1 km2, each square on the map being one square centimetre in area and representing 1 km2 on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |