Cut-elimination
   HOME
*





Cut-elimination
The cut-elimination theorem (or Gentzen's ''Hauptsatz'') is the central result establishing the significance of the sequent calculus. It was originally proved by Gerhard Gentzen in his landmark 1934 paper "Investigations in Logical Deduction" for the systems LJ and LK formalising intuitionistic and classical logic respectively. The cut-elimination theorem states that any judgement that possesses a proof in the sequent calculus making use of the cut rule also possesses a cut-free proof, that is, a proof that does not make use of the cut rule. The cut rule A sequent is a logical expression relating multiple formulas, in the form , which is to be read as proves , and (as glossed by Gentzen) should be understood as equivalent to the truth-function "If (A_1 and A_2 and A_3 …) then (B_1 or B_2 or B_3 …)." Note that the left-hand side (LHS) is a conjunction (and) and the right-hand side (RHS) is a disjunction (or). The LHS may have arbitrarily many or few formulae; when the LH ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequent Calculus
In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology (called a sequent by Gerhard Gentzen) instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies. Sequent calculus is one of several extant styles of proof calculus for expressing line-by-line logical arguments. * Hilbert style. Every line is an unconditional tautology (or theorem). * Gentzen s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


System LJ
In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a formal proof, proof is a conditional tautology (logic), tautology (called a sequent by Gerhard Gentzen) instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert, David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order logic, first-order language rather than conditional tautologies. Sequent calculus is one of several extant styles of proof calculus for expressing line-by-line logical arguments. * Hilbert system, Hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


System LK
In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a formal proof, proof is a conditional tautology (logic), tautology (called a sequent by Gerhard Gentzen) instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert, David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order logic, first-order language rather than conditional tautologies. Sequent calculus is one of several extant styles of proof calculus for expressing line-by-line logical arguments. * Hilbert system, Hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proof Theory
Proof theory is a major branchAccording to Wang (1981), pp. 3–4, proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. Jon Barwise, Barwise (1978) consists of four corresponding parts, with part D being about "Proof Theory and Constructive Mathematics". of mathematical logic that represents Mathematical proof, proofs as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as Recursive data type, inductively-defined data structures such as list (computer science), lists, boxed lists, or Tree (data structure), trees, which are constructed according to the axioms and rule of inference, rules of inference of the logical system. Consequently, proof theory is syntax (logic), syntactic in nature, in contrast to model theory, which is Formal semantics (logic), semantic in nature. Some of the major areas of proof theory include structural proof theory, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Subformula Property
Proof theory is a major branchAccording to Wang (1981), pp. 3–4, proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. Barwise (1978) consists of four corresponding parts, with part D being about "Proof Theory and Constructive Mathematics". of mathematical logic that represents proofs as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively-defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of the logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature. Some of the major areas of proof theory include structural proof theory, ordinal analysis, provability logic, reverse mathematics, proof mining, automated theorem proving, and proof complexity. Much research also focuses on applicati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proof-theoretic Semantics
Proof-theoretic semantics is an approach to the semantics of logic that attempts to locate the meaning of propositions and logical connectives not in terms of interpretations, as in Tarskian approaches to semantics, but in the role that the proposition or logical connective plays within the system of inference. Overview Gerhard Gentzen is the founder of proof-theoretic semantics, providing the formal basis for it in his account of cut-elimination for the sequent calculus, and some provocative philosophical remarks about locating the meaning of logical connectives in their introduction rules within natural deduction. The history of proof-theoretic semantics since then has been devoted to exploring the consequences of these ideas. Dag Prawitz extended Gentzen's notion of analytic proof to natural deduction, and suggested that the value of a proof in natural deduction may be understood as its normal form. This idea lies at the basis of the Curry–Howard isomorphism, and o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Proof
In mathematics, an analytic proof is a proof of a theorem in analysis that only makes use of methods from analysis, and which does not predominantly make use of algebraic or geometrical methods. The term was first used by Bernard Bolzano, who first provided a non-analytic proof of his intermediate value theorem and then, several years later provided a proof of the theorem that was free from intuitions concerning lines crossing each other at a point, and so he felt happy calling it analytic (Bolzano 1817). Bolzano's philosophical work encouraged a more abstract reading of when a demonstration could be regarded as analytic, where a proof is analytic if it does not go beyond its subject matter (Sebastik 2007). In proof theory, an analytic proof has come to mean a proof whose structure is simple in a special way, due to conditions on the kind of inferences that ensure none of them go beyond what is contained in the assumptions and what is demonstrated. Structural proof theory In pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Admissible Rule
In logic, a rule of inference is admissible in a formal system if the set of theorems of the system does not change when that rule is added to the existing rules of the system. In other words, every formula that can be derived using that rule is already derivable without that rule, so, in a sense, it is redundant. The concept of an admissible rule was introduced by Paul Lorenzen (1955). Definitions Admissibility has been systematically studied only in the case of structural (i.e. substitution-closed) rules in propositional non-classical logics, which we will describe next. Let a set of basic propositional connectives be fixed (for instance, \ in the case of superintuitionistic logics, or \ in the case of monomodal logics). Well-formed formulas are built freely using these connectives from a countably infinite set of propositional variables ''p''0, ''p''1, .... A substitution ''σ'' is a function from formulas to formulas that commutes with applications of the connective ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gerhard Gentzen
Gerhard Karl Erich Gentzen (24 November 1909 – 4 August 1945) was a German mathematician and logician. He made major contributions to the foundations of mathematics, proof theory, especially on natural deduction and sequent calculus. He died of starvation in a Soviet prison camp in Prague in 1945, having been interned as a German national after the Second World War. Life and career Gentzen was a student of Paul Bernays at the University of Göttingen. Bernays was fired as "non-Aryan" in April 1933 and therefore Hermann Weyl formally acted as his supervisor. Gentzen joined the Sturmabteilung in November 1933 although he was by no means compelled to do so. Nevertheless he kept in contact with Bernays until the beginning of the Second World War. In 1935, he corresponded with Abraham Fraenkel in Jerusalem and was implicated by the Nazi teachers' union as one who "keeps contacts to the Chosen People." In 1935 and 1936, Hermann Weyl, head of the Göttingen mathematics department in 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Consistency Proof
In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term ''satisfiable'' is used instead. The syntactic definition states a theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences of T. Let A be a set of closed sentences (informally "axioms") and \langle A\rangle the set of closed sentences provable from A under some (specified, possibly implicitly) formal deductive system. The set of axioms A is consistent when \varphi, \lnot \varphi \in \langle A \rangle for no formula \varphi. If there ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deduction Theorem
In mathematical logic, a deduction theorem is a metatheorem that justifies doing conditional proofs—to prove an implication ''A'' → ''B'', assume ''A'' as an hypothesis and then proceed to derive ''B''—in systems that do not have an explicit inference rule for this. Deduction theorems exist for both propositional logic and first-order logic. The deduction theorem is an important tool in Hilbert-style deduction systems because it permits one to write more comprehensible and usually much shorter proofs than would be possible without it. In certain other formal proof systems the same conveniency is provided by an explicit inference rule; for example natural deduction calls it implication introduction. In more detail, the propositional logic deduction theorem states that if a formula B is deducible from a set of assumptions \Delta \cup \ then the implication A \to B is deducible from \Delta ; in symbols, \Delta \cup \ \vdash B implies \Delta \vdash A \to B . In the sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normal Form (term Rewriting)
In abstract rewriting, an object is in normal form if it cannot be rewritten any further, i.e. it is irreducible. Depending on the rewriting system, an object may rewrite to several normal forms or none at all. Many properties of rewriting systems relate to normal forms. Definitions Stated formally, if (''A'',→) is an abstract rewriting system, ''x''∈''A'' is in normal form if no ''y''∈''A'' exists such that ''x''→''y'', i.e. ''x'' is an irreducible term. An object ''a'' is weakly normalizing if there exists at least one particular sequence of rewrites starting from ''a'' that eventually yields a normal form. A rewriting system has the weak normalization property or is ''(weakly) normalizing'' (WN) if every object is weakly normalizing. An object ''a'' is strongly normalizing if every sequence of rewrites starting from ''a'' eventually terminates with a normal form. An abstract rewriting system is ''strongly normalizing'', ''terminating'', ''noetherian'', or has the (stro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]