HOME
*





Continuation Shot
In computer science, a continuation is an abstract representation of the control state of a computer program. A continuation implements ( reifies) the program control state, i.e. the continuation is a data structure that represents the computational process at a given point in the process's execution; the created data structure can be accessed by the programming language, instead of being hidden in the runtime environment. Continuations are useful for encoding other control mechanisms in programming languages such as exceptions, generators, coroutines, and so on. The "current continuation" or "continuation of the computation step" is the continuation that, from the perspective of running code, would be derived from the current point in a program's execution. The term ''continuations'' can also be used to refer to first-class continuations, which are constructs that give a programming language the ability to save the execution state at any point and return to that point at a lat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Programming
In computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that map values to other values, rather than a sequence of imperative statements which update the running state of the program. In functional programming, functions are treated as first-class citizens, meaning that they can be bound to names (including local identifiers), passed as arguments, and returned from other functions, just as any other data type can. This allows programs to be written in a declarative and composable style, where small functions are combined in a modular manner. Functional programming is sometimes treated as synonymous with purely functional programming, a subset of functional programming which treats all functions as deterministic mathematical functions, or pure functions. When a pure function is called ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Green Thread
In computer programming, a green thread is a thread that is scheduled by a runtime library or virtual machine (VM) instead of natively by the underlying operating system (OS). Green threads emulate multithreaded environments without relying on any native OS abilities, and they are managed in user space instead of kernel space, enabling them to work in environments that do not have native thread support. Etymology Green threads refers to the name of the original thread library for the programming language Java (that was released in version 1.1 and then Green threads were abandoned in version 1.3 to native threads). It was designed by ''The Green Team'' at Sun Microsystems. History Green threads were briefly available in Java between 1997 and 2000 Green threads share a single operating system thread through co-operative concurrency and can therefore not achieve parallelism performance gains like operating system threads. The main benefit of coroutines and green threads is ease ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Software Design Pattern
In software engineering, a software design pattern is a general, reusable solution to a commonly occurring problem within a given context in software design. It is not a finished design that can be transformed directly into source or machine code. Rather, it is a description or template for how to solve a problem that can be used in many different situations. Design patterns are formalized best practices that the programmer can use to solve common problems when designing an application or system. Object-oriented design patterns typically show relationships and interactions between classes or objects, without specifying the final application classes or objects that are involved. Patterns that imply mutable state may be unsuited for functional programming languages. Some patterns can be rendered unnecessary in languages that have built-in support for solving the problem they are trying to solve, and object-oriented patterns are not necessarily suitable for non-object-oriented l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lambda Calculus
Lambda calculus (also written as ''λ''-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation that can be used to simulate any Turing machine. It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. Lambda calculus consists of constructing § lambda terms and performing § reduction operations on them. In the simplest form of lambda calculus, terms are built using only the following rules: * x – variable, a character or string representing a parameter or mathematical/logical value. * (\lambda x.M) – abstraction, function definition (M is a lambda term). The variable x becomes bound in the expression. * (M\ N) – application, applying a function M to an argument N. M and N are lambda terms. The reduction operations include: * (\lambda x.M \rightarrow(\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Process Calculi
In computer science, the process calculi (or process algebras) are a diverse family of related approaches for formally modelling concurrent systems. Process calculi provide a tool for the high-level description of interactions, communications, and synchronizations between a collection of independent agents or processes. They also provide algebraic laws that allow process descriptions to be manipulated and analyzed, and permit formal reasoning about equivalences between processes (e.g., using bisimulation). Leading examples of process calculi include CSP, CCS, ACP, and LOTOS. More recent additions to the family include the π-calculus, the ambient calculus, PEPA, the fusion calculus and the join-calculus. Essential features While the variety of existing process calculi is very large (including variants that incorporate stochastic behaviour, timing information, and specializations for studying molecular interactions), there are several features that all process calculi have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Actor Model
The actor model in computer science is a mathematical model of concurrent computation that treats ''actor'' as the universal primitive of concurrent computation. In response to a message it receives, an actor can: make local decisions, create more actors, send more messages, and determine how to respond to the next message received. Actors may modify their own private state, but can only affect each other indirectly through messaging (removing the need for lock-based synchronization). The actor model originated in 1973. It has been used both as a framework for a theoretical understanding of computation and as the theoretical basis for several practical implementations of concurrent systems. The relationship of the model to other work is discussed in actor model and process calculi. History According to Carl Hewitt, unlike previous models of computation, the actor model was inspired by physics, including general relativity and quantum mechanics. It was also influenced by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Standard ML
Standard ML (SML) is a general-purpose, modular, functional programming language with compile-time type checking and type inference. It is popular among compiler writers and programming language researchers, as well as in the development of theorem provers. Standard ML is a modern dialect of ML, the language used in the Logic for Computable Functions (LCF) theorem-proving project. It is distinctive among widely used languages in that it has a formal specification, given as typing rules and operational semantics in ''The Definition of Standard ML''. Language Standard ML is a functional programming language with some impure features. Programs written in Standard ML consist of expressions as opposed to statements or commands, although some expressions of type unit are only evaluated for their side-effects. Functions Like all functional languages, a key feature of Standard ML is the function, which is used for abstraction. The factorial function can be expressed as fol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Call-with-current-continuation
In the Scheme computer programming language, the procedure call-with-current-continuation, abbreviated call/cc, is used as a control flow operator. It has been adopted by several other programming languages. Taking a function f as its only argument, (call/cc f) within an expression is applied to the current continuation of the expression. For example ((call/cc f) e2) is equivalent to applying f to the current continuation of the expression. The current continuation is given by replacing (call/cc f) by a variable c bound by a lambda abstraction, so the current continuation is (lambda (c) (c e2)). Applying the function f to it gives the final result (f (lambda (c) (c e2))). As a complementary example, in an expression (e1 (call/cc f)), the continuation for the sub-expression (call/cc f) is (lambda (c) (e1 c)), so the whole expression is equivalent to (f (lambda (c) (e1 c))). In other words it takes a "snapshot" of the current control context or control state of the program as an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scheme (programming Language)
Scheme is a dialect of the Lisp family of programming languages. Scheme was created during the 1970s at the MIT AI Lab and released by its developers, Guy L. Steele and Gerald Jay Sussman, via a series of memos now known as the Lambda Papers. It was the first dialect of Lisp to choose lexical scope and the first to require implementations to perform tail-call optimization, giving stronger support for functional programming and associated techniques such as recursive algorithms. It was also one of the first programming languages to support first-class continuations. It had a significant influence on the effort that led to the development of Common Lisp.Common LISP: The Language, 2nd Ed., Guy L. Steele Jr. Digital Press; 1981. . "Common Lisp is a new dialect of Lisp, a successor to MacLisp, influenced strongly by ZetaLisp and to some extent by Scheme and InterLisp." The Scheme language is standardized in the official IEEE standard1178-1990 (Reaff 2008) IEEE Standard for t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Process Image
In computing, a system image is a serialized copy of the entire state of a computer system stored in some non-volatile form such as a file. A system is said to be capable of using system images if it can be shut down and later restored to exactly the same state. In such cases, system images can be used for backup. Hibernation is an example that uses an image of the entire machine's RAM. Disk images {{Main article, Disk image If a system has all its state written to a disk, then a system image can be produced by simply copying that disk to a file elsewhere, often with disk cloning applications. On many systems a complete system image cannot be created by a disk cloning program running within that system because information can be held outside of disks and volatile memory, for example in non-volatile memory like boot ROMs. Process images A process image is a copy of a given process's state at a given point in time. It is often used to create persistence within an otherwise vola ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


First-class Continuations
In computer science, a continuation is an abstract representation of the control state of a computer program. A continuation implements ( reifies) the program control state, i.e. the continuation is a data structure that represents the computational process at a given point in the process's execution; the created data structure can be accessed by the programming language, instead of being hidden in the runtime environment. Continuations are useful for encoding other control mechanisms in programming languages such as exceptions, generators, coroutines, and so on. The "current continuation" or "continuation of the computation step" is the continuation that, from the perspective of running code, would be derived from the current point in a program's execution. The term ''continuations'' can also be used to refer to first-class continuations, which are constructs that give a programming language the ability to save the execution state at any point and return to that point at a lat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]