Constrained Conditional Model
   HOME





Constrained Conditional Model
A constrained conditional model (CCM) is a machine learning and inference framework that augments the learning of conditional (probabilistic or discriminative) models with declarative constraints. The constraint can be used as a way to incorporate expressive prior knowledge into the model and bias the assignments made by the learned model to satisfy these constraints. The framework can be used to support decisions in an expressive output space while maintaining modularity and tractability of training and inference. Models of this kind have recently attracted much attention within the natural language processing ( NLP) community. Formulating problems as constrained optimization problems over the output of learned models has several advantages. It allows one to focus on the modeling of problems by providing the opportunity to incorporate domain-specific knowledge as global constraints using a first order language. Using this declarative framework frees the developer from low level fea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Machine Learning
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of Computational statistics, statistical algorithms that can learn from data and generalise to unseen data, and thus perform Task (computing), tasks without explicit Machine code, instructions. Within a subdiscipline in machine learning, advances in the field of deep learning have allowed Neural network (machine learning), neural networks, a class of statistical algorithms, to surpass many previous machine learning approaches in performance. ML finds application in many fields, including natural language processing, computer vision, speech recognition, email filtering, agriculture, and medicine. The application of ML to business problems is known as predictive analytics. Statistics and mathematical optimisation (mathematical programming) methods comprise the foundations of machine learning. Data mining is a related field of study, focusing on exploratory data analysi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Natural Language Processing
Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence. It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics. Major tasks in natural language processing are speech recognition, text classification, natural-language understanding, natural language understanding, and natural language generation. History Natural language processing has its roots in the 1950s. Already in 1950, Alan Turing published an article titled "Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence, though at the time that was not articulated as a problem separate from artificial intelligence. The proposed test includes a task that involves the automated interpretation and generation of natural language ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Constrained Optimization
In mathematical optimization, constrained optimization (in some contexts called constraint optimization) is the process of optimizing an objective function with respect to some variables in the presence of constraints on those variables. The objective function is either a cost function or energy function, which is to be minimized, or a reward function or utility function, which is to be maximized. Constraints can be either hard constraints, which set conditions for the variables that are required to be satisfied, or soft constraints, which have some variable values that are penalized in the objective function if, and based on the extent that, the conditions on the variables are not satisfied. Relation to constraint-satisfaction problems The constrained-optimization problem (COP) is a significant generalization of the classic constraint-satisfaction problem (CSP) model. COP is a CSP that includes an ''objective function'' to be optimized. Many algorithms are used to hand ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Feature Engineering
Feature engineering is a preprocessing step in supervised machine learning and statistical modeling which transforms raw data into a more effective set of inputs. Each input comprises several attributes, known as features. By providing models with relevant information, feature engineering significantly enhances their predictive accuracy and decision-making capability. Beyond machine learning, the principles of feature engineering are applied in various scientific fields, including physics. For example, physicists construct dimensionless numbers such as the Reynolds number in fluid dynamics, the Nusselt number in heat transfer, and the Archimedes number in sedimentation. They also develop first approximations of solutions, such as analytical solutions for the strength of materials in mechanics. Clustering One of the applications of feature engineering has been clustering of feature-objects or sample-objects in a dataset. Especially, feature engineering based on matrix decomposit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Textual Entailment
In natural language processing, textual entailment (TE), also known as natural language inference (NLI), is a directional relation between text fragments. The relation holds whenever the truth of one text fragment follows from another text. Definition In the TE framework, the entailing and entailed texts are termed ''text'' (''t'') and ''hypothesis'' (''h''), respectively. Textual entailment is not the same as pure logical entailment – it has a more relaxed definition: "''t'' entails ''h''" (''t'' ⇒ ''h'') if, typically, a human reading ''t'' would infer that ''h'' is most likely true. (Alternatively: ''t'' ⇒ ''h'' if and only if, typically, a human reading ''t'' would be justified in inferring the proposition expressed by ''h'' from the proposition expressed by ''t''.) The relation is directional because even if "''t'' entails ''h''", the reverse "''h'' entails ''t''" is much less certain.MultiNLIref name=Williams2018>SciTailref name=Khot2018>SICKref name=Marelli2014> ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Markov Logic Network
A Markov logic network (MLN) is a probabilistic logic which applies the ideas of a Markov network to first-order logic, defining probability distributions on possible worlds on any given domain. History In 2002, Ben Taskar, Pieter Abbeel and Daphne Koller introduced relational Markov networks as templates to specify Markov networks abstractly and without reference to a specific domain. Work on Markov logic networks began in 2003 by Pedro Domingos and Matt Richardson. Markov logic networks is a popular formalism for statistical relational learning. Syntax A Markov logic network consists of a collection of formulas from first-order logic, to each of which is assigned a real number, the weight. The underlying idea is that an interpretation is more likely if it satisfies formulas with positive weights and less likely if it satisfies formulas with negative weights. For instance, the following Markov logic network codifies how smokers are more likely to be friends with other sm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Domain Knowledge
Domain knowledge is knowledge of a specific discipline or field in contrast to general (or domain-independent) knowledge. The term is often used in reference to a more general discipline—for example, in describing a software engineer who has general knowledge of computer programming as well as domain knowledge about developing programs for a particular industry. People with domain knowledge are often regarded as specialists or experts in their field. Knowledge capture In software engineering, ''domain knowledge'' is knowledge about the environment in which the target system operates, for example, software agents. Domain knowledge usually must be learned from software users in the domain (as domain specialists/experts), rather than from software developers. It may include user workflows, data pipelines, business policies, configurations and constraints and is crucial in the development of a software application. Expert domain knowledge (frequently informal and ill-structured) is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Structured Prediction
Structured prediction or structured output learning is an umbrella term for supervised machine learning techniques that involves predicting structured objects, rather than discrete or real values. Similar to commonly used supervised learning techniques, structured prediction models are typically trained by means of observed data in which the predicted value is compared to the ground truth, and this is used to adjust the model parameters. Due to the complexity of the model and the interrelations of predicted variables, the processes of model training and inference are often computationally infeasible, so approximate inference and learning methods are used. Applications An example application is the problem of translating a natural language sentence into a syntactic representation such as a parse tree. This can be seen as a structured prediction problem in which the structured output domain is the set of all possible parse trees. Structured prediction is used in a wide variety ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Natural Language Processing
Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence. It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics. Major tasks in natural language processing are speech recognition, text classification, natural-language understanding, natural language understanding, and natural language generation. History Natural language processing has its roots in the 1950s. Already in 1950, Alan Turing published an article titled "Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence, though at the time that was not articulated as a problem separate from artificial intelligence. The proposed test includes a task that involves the automated interpretation and generation of natural language ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Semantic Role Labeling
In natural language processing, semantic role labeling (also called shallow semantic parsing or slot-filling) is the process that assigns labels to words or phrases in a sentence that indicates their semantic role in the sentence, such as that of an agent, goal, or result. It serves to find the meaning of the sentence. To do this, it detects the arguments associated with the predicate or verb of a sentence and how they are classified into their specific roles. A common example is the sentence "Mary sold the book to John." The agent is "Mary," the predicate is "sold" (or rather, "to sell,") the theme is "the book," and the recipient is "John." Another example is how "the book belongs to me" would need two labels such as "possessed" and "possessor" and "the book was sold to John" would need two other labels such as theme and recipient, despite these two clauses being similar to "subject" and "object" functions. History In 1968, the first idea for semantic role labeling was prop ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coreference
In linguistics, coreference, sometimes written co-reference, occurs when two or more expressions refer to the same person or thing; they have the same referent. For example, in ''Bill said Alice would arrive soon, and she did'', the words ''Alice'' and ''she'' refer to the same person. Co-reference is often non-trivial to determine. For example, in ''Bill said he would come'', the word ''he'' may or may not refer to Bill. Determining which expressions are coreferences is an important part of analyzing or understanding the meaning, and often requires information from the context, real-world knowledge, such as tendencies of some names to be associated with particular species ("Rover"), kinds of artifacts ("Titanic"), grammatical genders, or other properties. Linguists commonly use indices to notate coreference, as in ''Billi said hei would come''. Such expressions are said to be ''coindexed'', indicating that they should be interpreted as coreferential. When expressions are corefer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transliteration
Transliteration is a type of conversion of a text from one script to another that involves swapping letters (thus '' trans-'' + '' liter-'') in predictable ways, such as Greek → and → the digraph , Cyrillic → , Armenian → or Latin → . For instance, for the Greek term , which is usually translated as 'Hellenic Republic', the usual transliteration into the Latin script (romanization) is ; and the Russian term , which is usually translated as 'Russian Republic', can be transliterated either as or alternatively as . Transliteration is the process of representing or intending to represent a word, phrase, or text in a different script or writing system. Transliterations are designed to convey the pronunciation of the original word in a different script, allowing readers or speakers of that script to approximate the sounds and pronunciation of the original word. Transliterations do not change the pronunciation of the word. Thus, in the Greek above example, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]