Complex Lie Algebra
   HOME
*





Complex Lie Algebra
In mathematics, a complex Lie algebra is a Lie algebra over the complex numbers. Given a complex Lie algebra \mathfrak, its conjugate \overline is a complex Lie algebra with the same underlying real vector space but with i = \sqrt acting as -i instead. As a real Lie algebra, a complex Lie algebra \mathfrak is trivially isomorphic to its conjugate. A complex Lie algebra is isomorphic to its conjugate if and only if it admits a real form (and is said to be defined over the real numbers). Real form Given a complex Lie algebra \mathfrak, a real Lie algebra \mathfrak_0 is said to be a real form of \mathfrak if the complexification \mathfrak_0 \otimes_\mathbb is isomorphic to \mathfrak. A real form \mathfrak_0 is abelian (resp. nilpotent, solvable, semisimple) if and only if \mathfrak is abelian (resp. nilpotent, solvable, semisimple). On the other hand, a real form \mathfrak_0 is simple if and only if either \mathfrak is simple or \mathfrak is of the form \mathfrak \times \overline ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted [x,y]. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative property, associative. Lie algebras are closely related to Lie groups, which are group (mathematics), groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected space, connected Lie group unique up to finite coverings (Lie's third theorem). This Lie group–Lie algebra correspondence, correspondence allows one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real Form
In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra ''g''0 is called a real form of a complex Lie algebra ''g'' if ''g'' is the complexification of ''g''0: : \mathfrak\simeq\mathfrak_0\otimes_\mathbb. The notion of a real form can also be defined for complex Lie groups. Real forms of complex semisimple Lie groups and Lie algebras have been completely classified by Élie Cartan. Real forms for Lie groups and algebraic groups Using the Lie correspondence between Lie groups and Lie algebras, the notion of a real form can be defined for Lie groups. In the case of linear algebraic groups, the notions of complexification and real form have a natural description in the language of algebraic geometry. Classification Just as complex semisimple Lie algebras are classified by Dynkin diagrams, the real forms of a semisimple Lie algebra are classified by Satake diagrams, which are obtained from the Dynkin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complexification
In mathematics, the complexification of a vector space over the field of real numbers (a "real vector space") yields a vector space over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include their scaling ("multiplication") by complex numbers. Any basis for (a space over the real numbers) may also serve as a basis for over the complex numbers. Formal definition Let V be a real vector space. The of is defined by taking the tensor product of V with the complex numbers (thought of as a 2-dimensional vector space over the reals): :V^ = V\otimes_ \Complex\,. The subscript, \R, on the tensor product indicates that the tensor product is taken over the real numbers (since V is a real vector space this is the only sensible option anyway, so the subscript can safely be omitted). As it stands, V^ is only a real vector space. However, we can make V^ into a complex vector space by defining complex multiplication as follows: :\alpha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simple Lie Algebra
In algebra, a simple Lie algebra is a Lie algebra that is non-abelian and contains no nonzero proper ideals. The classification of real simple Lie algebras is one of the major achievements of Wilhelm Killing and Élie Cartan. A direct sum of simple Lie algebras is called a semisimple Lie algebra. A simple Lie group is a connected Lie group whose Lie algebra is simple. Complex simple Lie algebras A finite-dimensional simple complex Lie algebra is isomorphic to either of the following: \mathfrak_n \mathbb, \mathfrak_n \mathbb, \mathfrak_ \mathbb (classical Lie algebras) or one of the five exceptional Lie algebras. To each finite-dimensional complex semisimple Lie algebra \mathfrak, there exists a corresponding diagram (called the Dynkin diagram) where the nodes denote the simple roots, the nodes are jointed (or not jointed) by a number of lines depending on the angles between the simple roots and the arrows are put to indicate whether the roots are longer or shorter. The Dynk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complex Lie Group
In geometry, a complex Lie group is a Lie group over the complex numbers; i.e., it is a complex-analytic manifold that is also a group in such a way G \times G \to G, (x, y) \mapsto x y^ is holomorphic. Basic examples are \operatorname_n(\mathbb), the general linear groups over the complex numbers. A connected compact complex Lie group is precisely a complex torus (not to be confused with the complex Lie group \mathbb C^*). Any finite group may be given the structure of a complex Lie group. A complex semisimple Lie group is a linear algebraic group. The Lie algebra of a complex Lie group is a complex Lie algebra. Examples *A finite-dimensional vector space over the complex numbers (in particular, complex Lie algebra) is a complex Lie group in an obvious way. *A connected compact complex Lie group ''A'' of dimension ''g'' is of the form \mathbb^g/L where ''L'' is a discrete subgroup. Indeed, its Lie algebra \mathfrak can be shown to be abelian and then \operatorname: \mathf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cartan Subalgebra
In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra \mathfrak of a Lie algebra \mathfrak that is self-normalising (if ,Y\in \mathfrak for all X \in \mathfrak, then Y \in \mathfrak). They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra \mathfrak over a field of characteristic 0 . In a finite-dimensional semisimple Lie algebra over an algebraically closed field of characteristic zero (e.g., a Cartan subalgebra is the same thing as a maximal abelian subalgebra consisting of elements ''x'' such that the adjoint endomorphism \operatorname(x) : \mathfrak \to \mathfrak is semisimple (i.e., diagonalizable). Sometimes this characterization is simply taken as the definition of a Cartan subalgebra.pg 231 In general, a subalgebra is called toral if it consists of semisimple elements. Over an algebraically closed field, a toral subalgebra is automatically abelian. Thus, over ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cartan Subgroup
In algebraic geometry, a Cartan subgroup of a connected linear algebraic group over an algebraically closed field is the centralizer of a maximal torus (which turns out to be connected). Cartan subgroups are nilpotent and are all conjugate. Examples * For a finite field ''F'', the group of diagonal matrices \begin a & 0 \\ 0 & b \end where ''a'' and ''b'' are elements of ''F*''. This is called the split Cartan subgroup of GL2(''F''). * For a finite field ''F'', every maximal commutative semisimple subgroup of GL2(''F'') is a Cartan subgroup (and conversely). See also *Borel subgroup In the theory of algebraic groups, a Borel subgroup of an algebraic group ''G'' is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the general linear group ''GLn'' (''n x n'' invertible matrices), the subgroup ... References * * * * {{algebra-stub Algebraic geometry Linear algebraic groups ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponential Map (Lie Theory)
In the theory of Lie groups, the exponential map is a map from the Lie algebra \mathfrak g of a Lie group G to the group, which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of the primary reasons that Lie algebras are a useful tool for studying Lie groups. The ordinary exponential function of mathematical analysis is a special case of the exponential map when G is the multiplicative group of positive real numbers (whose Lie algebra is the additive group of all real numbers). The exponential map of a Lie group satisfies many properties analogous to those of the ordinary exponential function, however, it also differs in many important respects. Definitions Let G be a Lie group and \mathfrak g be its Lie algebra (thought of as the tangent space to the identity element of G). The exponential map is a map :\exp\colon \mathfrak g \to G which can be defined in several different ways. The typical modern definition is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Subalgebra
In mathematics, specifically in representation theory, a Borel subalgebra of a Lie algebra \mathfrak is a maximal solvable subalgebra. The notion is named after Armand Borel. If the Lie algebra \mathfrak is the Lie algebra of a complex Lie group, then a Borel subalgebra is the Lie algebra of a Borel subgroup. Borel subalgebra associated to a flag Let \mathfrak g = \mathfrak(V) be the Lie algebra of the endomorphisms of a finite-dimensional vector space ''V'' over the complex numbers. Then to specify a Borel subalgebra of \mathfrak g amounts to specify a flag of ''V''; given a flag V = V_0 \supset V_1 \supset \cdots \supset V_n = 0, the subspace \mathfrak b = \ is a Borel subalgebra, and conversely, each Borel subalgebra is of that form by Lie's theorem. Hence, the Borel subalgebras are classified by the flag variety of ''V''. Borel subalgebra relative to a base of a root system Let \mathfrak g be a complex semisimple Lie algebra, \mathfrak h a Cartan subalgebra and ''R'' the r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Borel Subgroup
In the theory of algebraic groups, a Borel subgroup of an algebraic group ''G'' is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the general linear group ''GLn'' (''n x n'' invertible matrices), the subgroup of invertible upper triangular matrices is a Borel subgroup. For groups realized over algebraically closed fields, there is a single conjugacy class of Borel subgroups. Borel subgroups are one of the two key ingredients in understanding the structure of simple (more generally, reductive) algebraic groups, in Jacques Tits' theory of groups with a (B,N) pair. Here the group ''B'' is a Borel subgroup and ''N'' is the normalizer of a maximal torus contained in ''B''. The notion was introduced by Armand Borel, who played a leading role in the development of the theory of algebraic groups. Parabolic subgroups Subgroups between a Borel subgroup ''B'' and the ambient group ''G'' are called parabolic subgroups. Parabolic subgroups ''P'' are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]