Complex-oriented Cohomology Theory
   HOME
*





Complex-oriented Cohomology Theory
In algebraic topology, a complex-orientable cohomology theory is a multiplicative cohomology theory ''E'' such that the restriction map E^2(\mathbb\mathbf^\infty) \to E^2(\mathbb\mathbf^1) is surjective. An element of E^2(\mathbb\mathbf^\infty) that restricts to the canonical generator of the reduced theory \widetilde^2(\mathbb\mathbf^1) is called a complex orientation. The notion is central to Quillen's work relating cohomology to formal group laws. If E is an even-graded theory meaning \pi_3 E = \pi_5 E = \cdots, then ''E'' is complex-orientable. This follows from the Atiyah–Hirzebruch spectral sequence. Examples: *An ordinary cohomology with any coefficient ring ''R'' is complex orientable, as \operatorname^2(\mathbb\mathbf^\infty; R) \simeq \operatorname^2(\mathbb\mathbf^1;R). *Complex ''K''-theory, denoted ''KU'', is complex-orientable, as it is even-graded. (Bott periodicity theorem) *Complex cobordism In mathematics, complex cobordism is a generalized cohomology theory re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches of algebraic topology Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiplicative Cohomology Theory
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory. From its beginning in topology, this idea became a dominant method in the mathematics of the second half of the twentieth century. From the initial idea of homology as a method of constructing algebraic invariants of topological spaces, the range of applications of homology and cohomology theories has spread throughout geometry and algebra. The terminology tends to hide the fact that cohomology, a contravariant theory, is more natural than homology in many applications. At a basic level, this has to do wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal Group Law
In mathematics, a formal group law is (roughly speaking) a formal power series behaving as if it were the product of a Lie group. They were introduced by . The term formal group sometimes means the same as formal group law, and sometimes means one of several generalizations. Formal groups are intermediate between Lie groups (or algebraic groups) and Lie algebras. They are used in algebraic number theory and algebraic topology. Definitions A one-dimensional formal group law over a commutative ring ''R'' is a power series ''F''(''x'',''y'') with coefficients in ''R'', such that # ''F''(''x'',''y'') = ''x'' + ''y'' + terms of higher degree # ''F''(''x'', ''F''(''y'',''z'')) = ''F''(''F''(''x'',''y''), ''z'') (associativity). The simplest example is the additive formal group law ''F''(''x'', ''y'') = ''x'' + ''y''. The idea of the definition is that ''F'' should be something like the formal power series expansion of the product of a Lie group, where we choose coordinates so that the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Atiyah–Hirzebruch Spectral Sequence
In mathematics, the Atiyah–Hirzebruch spectral sequence is a spectral sequence for calculating generalized cohomology, introduced by in the special case of topological K-theory. For a CW complex X and a generalized cohomology theory E^\bullet, it relates the generalized cohomology groups : E^i(X) with 'ordinary' cohomology groups H^j with coefficients in the generalized cohomology of a point. More precisely, the E_2 term of the spectral sequence is H^p(X;E^q(pt)), and the spectral sequence converges conditionally to E^(X). Atiyah and Hirzebruch pointed out a generalization of their spectral sequence that also generalizes the Serre spectral sequence, and reduces to it in the case where E=H_. It can be derived from an exact couple that gives the E_1 page of the Serre spectral sequence, except with the ordinary cohomology groups replaced with E. In detail, assume X to be the total space of a Serre fibration with fibre F and base space B. The filtration of B by its n-skeletons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bott Periodicity Theorem
In mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by , which proved to be of foundational significance for much further research, in particular in K-theory of stable complex vector bundles, as well as the stable homotopy groups of spheres. Bott periodicity can be formulated in numerous ways, with the periodicity in question always appearing as a period-2 phenomenon, with respect to dimension, for the theory associated to the unitary group. See for example topological K-theory. There are corresponding period-8 phenomena for the matching theories, (real) KO-theory and ( quaternionic) KSp-theory, associated to the real orthogonal group and the quaternionic symplectic group, respectively. The J-homomorphism is a homomorphism from the homotopy groups of orthogonal groups to stable homotopy groups of spheres, which causes the period 8 Bott periodicity to be visible in the stable homotopy groups of spheres. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complex Cobordism
In mathematics, complex cobordism is a generalized cohomology theory related to cobordism of manifolds. Its spectrum is denoted by MU. It is an exceptionally powerful cohomology theory, but can be quite hard to compute, so often instead of using it directly one uses some slightly weaker theories derived from it, such as Brown–Peterson cohomology or Morava K-theory, that are easier to compute. The generalized homology and cohomology complex cobordism theories were introduced by using the Thom spectrum. Spectrum of complex cobordism The complex bordism MU^*(X) of a space X is roughly the group of bordism classes of manifolds over X with a complex linear structure on the stable normal bundle. Complex bordism is a generalized homology theory, corresponding to a spectrum MU that can be described explicitly in terms of Thom spaces as follows. The space MU(n) is the Thom space of the universal n-plane bundle over the classifying space BU(n) of the unitary group U(n). The natural inclu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chromatic Homotopy Theory
In mathematics, chromatic homotopy theory is a subfield of stable homotopy theory that studies complex-oriented cohomology theories from the "chromatic" point of view, which is based on Quillen's work relating cohomology theories to formal groups. In this picture, theories are classified in terms of their "chromatic levels"; i.e., the heights of the formal groups that define the theories via the Landweber exact functor theorem. Typical theories it studies include: complex K-theory, elliptic cohomology, Morava K-theory and tmf. Chromatic convergence theorem In algebraic topology, the chromatic convergence theorem states the homotopy limit of the chromatic tower (defined below) of a finite ''p''-local spectrum X is X itself. The theorem was proved by Hopkins and Ravenel. Statement Let L_ denotes the Bousfield localization with respect to the Morava E-theory and let X be a finite, p-local spectrum. Then there is a tower associated to the localizations :\cdots \rightarrow L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches of algebraic topology Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]