Comparability Graph
   HOME
*



picture info

Comparability Graph
In graph theory, a comparability graph is an undirected graph that connects pairs of elements that are comparable to each other in a partial order. Comparability graphs have also been called transitively orientable graphs, partially orderable graphs, containment graphs, and divisor graphs. An incomparability graph is an undirected graph that connects pairs of elements that are not comparable to each other in a partial order. Definitions and characterization For any strict partially ordered set , the comparability graph of is the graph of which the vertices are the elements of and the edges are those pairs of elements such that . That is, for a partially ordered set, take the directed acyclic graph, apply transitive closure, and remove orientation. Equivalently, a comparability graph is a graph that has a transitive orientation, an assignment of directions to the edges of the graph (i.e. an orientation of the graph) such that the adjacency relation of the resulting directe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complete Graph
In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is connected by a pair of unique edges (one in each direction). Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of Königsberg. However, drawings of complete graphs, with their vertices placed on the points of a regular polygon, had already appeared in the 13th century, in the work of Ramon Llull. Such a drawing is sometimes referred to as a mystic rose. Properties The complete graph on vertices is denoted by . Some sources claim that the letter in this notation stands for the German word , but the German name for a complete graph, , does not contain the letter , and other sources state that the notation honors the contributions of Kazimierz Kuratowski to graph theory. has edges (a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perfect Graph
In graph theory, a perfect graph is a graph in which the chromatic number of every induced subgraph equals the order of the largest clique of that subgraph (clique number). Equivalently stated in symbolic terms an arbitrary graph G=(V,E) is perfect if and only if for all S\subseteq V we have \chi(G =\omega(G . The perfect graphs include many important families of graphs and serve to unify results relating colorings and cliques in those families. For instance, in all perfect graphs, the graph coloring problem, maximum clique problem, and maximum independent set problem can all be solved in polynomial time. In addition, several important min-max theorems in combinatorics, such as Dilworth's theorem, can be expressed in terms of the perfection of certain associated graphs. A graph G is 1-perfect if and only if \chi(G)=\omega(G). Then, G is perfect if and only if every induced subgraph of G is 1-perfect. Properties * By the perfect graph theorem, a graph G is perfect if and on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Threshold Graph
In graph theory, a threshold graph is a graph that can be constructed from a one-vertex graph by repeated applications of the following two operations: # Addition of a single isolated vertex to the graph. # Addition of a single dominating vertex to the graph, i.e. a single vertex that is connected to all other vertices. For example, the graph of the figure is a threshold graph. It can be constructed by beginning with a single-vertex graph (vertex 1), and then adding black vertices as isolated vertices and red vertices as dominating vertices, in the order in which they are numbered. Threshold graphs were first introduced by . A chapter on threshold graphs appears in , and the book is devoted to them. Alternative definitions An equivalent definition is the following: a graph is a threshold graph if there are a real number S and for each vertex v a real vertex weight w(v) such that for any two vertices v,u, uv is an edge if and only if w(u)+w(v)> S. Another equivalent definition ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Series-parallel Partial Order
In order theory, order-theoretic mathematics, a series-parallel partial order is a partially ordered set built up from smaller series-parallel partial orders by two simple composition operations... The series-parallel partial orders may be characterized as the N-free finite partial orders; they have order dimension at most two.. They include weak orders and the reachability relationship in Tree (graph theory), directed trees and directed series–parallel graphs. The comparability graphs of series-parallel partial orders are cographs. Series-parallel partial orders have been applied in job shop scheduling, machine learning of event sequencing in time series data, transmission sequencing of multimedia data, and throughput maximization in dataflow programming. Series-parallel partial orders have also been called multitrees;. however, that name is ambiguous: multitrees also refer to partial orders with no four-element diamond suborder and to other structures formed from multiple tree ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cograph
In graph theory, a cograph, or complement-reducible graph, or ''P''4-free graph, is a graph that can be generated from the single-vertex graph ''K''1 by complementation and disjoint union. That is, the family of cographs is the smallest class of graphs that includes ''K''1 and is closed under complementation and disjoint union. Cographs have been discovered independently by several authors since the 1970s; early references include , , , and . They have also been called D*-graphs, hereditary Dacey graphs (after the related work of James C. Dacey Jr. on orthomodular lattices), and 2-parity graphs. They have a simple structural decomposition involving disjoint union and complement graph operations that can be represented concisely by a labeled tree, and used algorithmically to efficiently solve many problems such as finding the maximum clique that are hard on more general graph classes. Special cases of the cographs include the complete graphs, complete bipartite graphs, cluster gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rooted Tree
In graph theory, a tree is an undirected graph in which any two vertices are connected by ''exactly one'' path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by ''at most one'' path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. A polytreeSee . (or directed tree or oriented treeSee .See . or singly connected networkSee .) is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest. The various kinds of data structures referred to as trees in computer science have underlying graphs that are trees in graph theory, although such data structures are generally rooted trees. A rooted tree may be directed, called a directed rooted tree, either making all its edges point away from the root—in which case it is called an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trivially Perfect Graph
In graph theory, a trivially perfect graph is a graph with the property that in each of its induced subgraphs the size of the maximum independent set equals the number of maximal cliques. Trivially perfect graphs were first studied by but were named by ; Golumbic writes that "the name was chosen since it is trivial to show that such a graph is perfect." Trivially perfect graphs are also known as comparability graphs of trees, arborescent comparability graphs, and quasi-threshold graphs. Equivalent characterizations Trivially perfect graphs have several other equivalent characterizations: *They are the comparability graphs of order-theoretic trees. That is, let be a partial order such that for each , the set is well-ordered by the relation , and also possesses a minimum element . Then the comparability graph of is trivially perfect, and every trivially perfect graph can be formed in this way. *They are the graphs that do not have a path graph or a cycle graph as induced sub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Permutation Graph
In the mathematical field of graph theory, a permutation graph is a graph whose vertices represent the elements of a permutation, and whose edges represent pairs of elements that are reversed by the permutation. Permutation graphs may also be defined geometrically, as the intersection graphs of line segments whose endpoints lie on two parallel lines. Different permutations may give rise to the same permutation graph; a given graph has a unique representation (up to permutation symmetry) if it is prime with respect to the modular decomposition. Definition and characterization If \rho = (\sigma_1,\sigma_2,...,\sigma_n) is any permutation of the numbers from 1 to n, then one may define a permutation graph from \sigma in which there are n vertices v_1, v_2, ..., v_n, and in which there is an edge v_i v_j for any two indices i and j for which i\sigma_j. That is, two indices i and j determine an edge in the permutation graph exactly when they determine an inversion in the permutatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Interval Order
In mathematics, especially order theory, the interval order for a collection of intervals on the real line is the partial order corresponding to their left-to-right precedence relation—one interval, ''I''1, being considered less than another, ''I''2, if ''I''1 is completely to the left of ''I''2. More formally, a countable poset P = (X, \leq) is an interval order if and only if there exists a bijection from X to a set of real intervals, so x_i \mapsto (\ell_i, r_i) , such that for any x_i, x_j \in X we have x_i , a left nesting is an i \in n/math> such that i < i+1 < f(i+1) < f(i) and a right nesting is an i \in n/math> such that f(i) < f(i+1) < i < i+1 . Such involutions, according to semi-length, have

Interval Graph
In graph theory, an interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each interval and an edge between vertices whose intervals intersect. It is the intersection graph of the intervals. Interval graphs are chordal graphs and perfect graphs. They can be recognized in linear time, and an optimal graph coloring or maximum clique in these graphs can be found in linear time. The interval graphs include all proper interval graphs, graphs defined in the same way from a set of unit intervals. These graphs have been used to model food webs, and to study scheduling problems in which one must select a subset of tasks to be performed at non-overlapping times. Other applications include assembling contiguous subsequences in DNA mapping, and temporal reasoning. Definition An interval graph is an undirected graph formed from a family of intervals :S_i,\quad i=0,1,2,\dots by creating one vertex for each interval , and connecting two ver ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complement (graph Theory)
In the mathematical field of graph theory, the complement or inverse of a graph is a graph on the same vertices such that two distinct vertices of are adjacent if and only if they are not adjacent in . That is, to generate the complement of a graph, one fills in all the missing edges required to form a complete graph, and removes all the edges that were previously there.. The complement is not the set complement of the graph; only the edges are complemented. Definition Let be a simple graph and let consist of all 2-element subsets of . Then is the complement of , where is the relative complement of in . For directed graphs, the complement can be defined in the same way, as a directed graph on the same vertex set, using the set of all 2-element ordered pairs of in place of the set in the formula above. In terms of the adjacency matrix ''A'' of the graph, if ''Q'' is the adjacency matrix of the complete graph of the same number of vertices (i.e. all entries are unity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]