Compact Set
   HOME
*



picture info

Compact Set
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Compact
Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British North America * Compact of Free Association whereby the sovereign states of the Federated States of Micronesia, the Republic of the Marshall Islands and the Republic of Palau have entered into as associated states with the United States. * Mayflower Compact, the first governing document of Plymouth Colony * United Nations Global Compact * Global Compact for Migration, a UN non-binding intergovernmental agreement Mathematics * Compact element, those elements of a partially ordered set that cannot be subsumed by a supremum of any directed set that does not already contain them * Compact operator, a linear operator that takes bounded subsets to relatively compact subsets, in functional analysis * Compact space, a topological space such tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinite Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter 'M' first and 'Y' last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be '' finite'', as in these examples, or '' inf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pavel Urysohn
Pavel Samuilovich Urysohn () (February 3, 1898 – August 17, 1924) was a Soviet mathematician who is best known for his contributions in dimension theory, and for developing Urysohn's metrization theorem and Urysohn's lemma, both of which are fundamental results in topology. His name is also commemorated in the terms Urysohn universal space, Fréchet–Urysohn space, Menger–Urysohn dimension and Urysohn integral equation. He and Pavel Alexandrov formulated the modern definition of compactness in 1923. Biography Born in 1898 in Odessa, Urysohn studied at Moscow University from 1915 to 1921. His advisor was Nikolai Luzin. He then became an assistant professor there. He drowned in 1924 while swimming off the coast of Brittany, France, near Batz-sur-Mer, and is buried there. Urysohn's sister, Lina Neiman, wrote a memoir about his life and childhood. Not being a mathematician, she included in the book memorial articles about his mathematical works by Pavel Alexandrov, Vadim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pavel Alexandrov
Pavel Sergeyevich Alexandrov (russian: Па́вел Серге́евич Алекса́ндров), sometimes romanized ''Paul Alexandroff'' (7 May 1896 – 16 November 1982), was a Soviet mathematician. He wrote about three hundred papers, making important contributions to set theory and topology. In topology, the Alexandroff compactification and the Alexandrov topology are named after him. Biography Alexandrov attended Moscow State University where he was a student of Dmitri Egorov and Nikolai Luzin. Together with Pavel Urysohn, he visited the University of Göttingen in 1923 and 1924. After getting his Ph.D. in 1927, he continued to work at Moscow State University and also joined the Steklov Institute of Mathematics. He was made a member of the Russian Academy of Sciences in 1953. Personal life Luzin challenged Alexandrov to determine if the continuum hypothesis is true. This still unsolved problem was too much for Alexandrov and he had a creative crisis at the end of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE