Collectionwise Normal
   HOME
*





Collectionwise Normal
In mathematics, a topological space X is called collectionwise normal if for every discrete family ''F''''i'' (''i'' ∈ ''I'') of closed subsets of X there exists a pairwise disjoint family of open sets ''U''''i'' (''i'' ∈ ''I''), such that ''F''''i'' ⊆ ''U''''i''. Here a family \mathcal of subsets of X is called ''discrete'' when every point of X has a neighbourhood that intersects at most one of the sets from \mathcal. An equivalent definition of collectionwise normal demands that the above ''U''''i'' (''i'' ∈ ''I'') themselves form a discrete family, which is stronger than pairwise disjoint. Some authors assume that X is also a T1 space as part of the definition. The property is intermediate in strength between paracompactness and normality, and occurs in metrization theorems. Properties *A collectionwise normal space is collectionwise Hausdorff. *A collectionwise normal space is normal. *A Hausdorff paracompact space is collectionwise normal.Note: The H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Countably Compact Space
In mathematics a topological space is called countably compact if every countable open cover has a finite subcover. Equivalent definitions A topological space ''X'' is called countably compact if it satisfies any of the following equivalent conditions: :(1) Every countable open cover of ''X'' has a finite subcover. :(2) Every infinite ''set'' ''A'' in ''X'' has an ω-accumulation point in ''X''. :(3) Every ''sequence'' in ''X'' has an accumulation point in ''X''. :(4) Every countable family of closed subsets of ''X'' with an empty intersection has a finite subfamily with an empty intersection. (1) \Rightarrow (2): Suppose (1) holds and ''A'' is an infinite subset of ''X'' without \omega-accumulation point. By taking a subset of ''A'' if necessary, we can assume that ''A'' is countable. Every x\in X has an open neighbourhood O_x such that O_x\cap A is finite (possibly empty), since ''x'' is ''not'' an ω-accumulation point. For every finite subset ''F'' of ''A'' define O_F = \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monotonically Normal Space
In mathematics, specifically in the field of topology, a monotonically normal space is a particular kind of normal space, defined in terms of a monotone normality operator. It satisfies some interesting properties; for example metric spaces and linearly ordered spaces are monotonically normal, and every monotonically normal space is hereditarily normal. Definition A topological space X is called monotonically normal if it satisfies any of the following equivalent definitions: Definition 1 The space X is T1 and there is a function G that assigns to each ordered pair (A,B) of disjoint closed sets in X an open set G(A,B) such that: :(i) A\subseteq G(A,B)\subseteq \overline\subseteq X\setminus B; :(ii) G(A,B)\subseteq G(A',B') whenever A\subseteq A' and B'\subseteq B. Condition (i) says X is a normal space, as witnessed by the function G. Condition (ii) says that G(A,B) varies in a monotone fashion, hence the terminology ''monotonically normal''. The operator G is called a mon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Proc
Proc may refer to: * Proč, a village in eastern Slovakia * '' Proč?'', a 1987 Czech film * procfs or proc filesystem, a special file system (typically mounted to ) in Unix-like operating systems for accessing process information * Protein C (PROC) * Proc, a term in video game terminology * Procedures or process, in the programming language ALGOL 68 * People's Republic of China, the formal name of China China, officially the People's Republic of China (PRC), is a country in East Asia. It is the world's most populous country, with a population exceeding 1.4 billion, slightly ahead of India. China spans the equivalent of five time zones and ... * the official acronym for the Canadian House of Commons Standing Committee on Procedure and House Affairs {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order Topology
In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets. If ''X'' is a totally ordered set, the order topology on ''X'' is generated by the subbase of "open rays" :\ :\ for all ''a, b'' in ''X''. Provided ''X'' has at least two elements, this is equivalent to saying that the open intervals :(a,b) = \ together with the above rays form a base for the order topology. The open sets in ''X'' are the sets that are a union of (possibly infinitely many) such open intervals and rays. A topological space ''X'' is called orderable or linearly orderable if there exists a total order on its elements such that the order topology induced by that order and the given topology on ''X'' coincide. The order topology makes ''X'' into a completely normal Hausdorff space. The standard topologies on R, Q, Z, and N are the order topologies. Indu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE