Collapsing Algebra
   HOME
*





Collapsing Algebra
In mathematics, a collapsing algebra is a type of Boolean algebra sometimes used in forcing to reduce ("collapse") the size of cardinals. The posets used to generate collapsing algebras were introduced by Azriel Lévy in 1963. The collapsing algebra of λω is a complete Boolean algebra with at least λ elements but generated by a countable number of elements. As the size of countably generated complete Boolean algebras is unbounded, this shows that there is no free complete Boolean algebra on a countable number of elements. Definition There are several slightly different sorts of collapsing algebras. If κ and λ are cardinals, then the Boolean algebra of regular open set A subset S of a topological space X is called a regular open set if it is equal to the interior of its closure; expressed symbolically, if \operatorname(\overline) = S or, equivalently, if \partial(\overline)=\partial S, where \operatorname S, \ov ...s of the product space κλ is a collapsing algebra. He ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boolean Algebra (structure)
In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra (with involution). Every Boolean algebra gives rise to a Boolean ring, and vice versa, with ring multiplication corresponding to conjunction or meet ∧, and ring addition to exclusive disjunction or symmetric difference (not disjunction ∨). However, the theory of Boolean rings has an inherent asymmetry between the two operators, while the axioms and theorems of Boolean algebra express the symmetry of the theory described by the duality principle. __TOC__ History The term "Boolean algebra" honors George Boole (1815–1864), a self-educated English ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Forcing (mathematics)
In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. It was first used by Paul Cohen in 1963, to prove the independence of the axiom of choice and the continuum hypothesis from Zermelo–Fraenkel set theory. Forcing has been considerably reworked and simplified in the following years, and has since served as a powerful technique, both in set theory and in areas of mathematical logic such as recursion theory. Descriptive set theory uses the notions of forcing from both recursion theory and set theory. Forcing has also been used in model theory, but it is common in model theory to define genericity directly without mention of forcing. Intuition Intuitively, forcing consists of expanding the set theoretical universe V to a larger universe V^ . In this bigger universe, for example, one might have many new real numbers, identified with subsets of the set \mathbb of natural numbers, that were not there in the old ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinal Number
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. The ''transfinite'' cardinal numbers, often denoted using the Hebrew symbol \aleph ( aleph) followed by a subscript, describe the sizes of infinite sets. Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of size. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for infinite sets to have different cardinalities, and in particular the cardinality of the set of real numbers is greater than the cardinality of the set of natural numbers. It is also possible for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poset
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a Set (mathematics), set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word ''partial'' in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable. Informal definition A partial order defines a notion of Comparability, comparison. Two elements ''x'' and ''y'' may stand in any of four mutually exclusive relationships to each other: either ''x''  ''y'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Azriel Lévy
Azriel Lévy (Hebrew: עזריאל לוי; born c. 1934) is an Israeli mathematician, logician, and a professor emeritus at the Hebrew University of Jerusalem. Biography Lévy obtained his Ph.D. at the Hebrew University of Jerusalem in 1958, under the supervision of Abraham Fraenkel and Abraham Robinson. Using Cohen's method of forcing, he proved several results on the consistency of various statements contradicting the axiom of choice. For example, with J. D. Halpern he proved that the Boolean prime ideal theorem does not imply the axiom of choice. He discovered the models ''L'' 'x''used in inner model theory. He also introduced the notions of Lévy hierarchy of the formulas of set theory, Levy collapse and the Feferman–Levy model. His students include Dov Gabbay, Moti Gitik, and Menachem Magidor Menachem Magidor (Hebrew: מנחם מגידור; born January 24, 1946) is an Israeli mathematician who specializes in mathematical logic, in particular set theory. He serve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Boolean Algebra
In mathematics, a complete Boolean algebra is a Boolean algebra in which every subset has a supremum (least upper bound). Complete Boolean algebras are used to construct Boolean-valued models of set theory in the theory of forcing. Every Boolean algebra ''A'' has an essentially unique completion, which is a complete Boolean algebra containing ''A'' such that every element is the supremum of some subset of ''A''. As a partially ordered set, this completion of ''A'' is the Dedekind–MacNeille completion. More generally, if κ is a cardinal then a Boolean algebra is called κ-complete if every subset of cardinality less than κ has a supremum. Examples Complete Boolean algebras *Every finite Boolean algebra is complete. *The algebra of subsets of a given set is a complete Boolean algebra. *The regular open sets of any topological space form a complete Boolean algebra. This example is of particular importance because every forcing poset can be considered as a topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Free Algebra
In mathematics, especially in the area of abstract algebra known as ring theory, a free algebra is the noncommutative analogue of a polynomial ring since its elements may be described as "polynomials" with non-commuting variables. Likewise, the polynomial ring may be regarded as a free commutative algebra. Definition For ''R'' a commutative ring, the free (associative, unital) algebra on ''n'' indeterminates is the free ''R''-module with a basis consisting of all words over the alphabet (including the empty word, which is the unit of the free algebra). This ''R''-module becomes an ''R''-algebra by defining a multiplication as follows: the product of two basis elements is the concatenation of the corresponding words: :\left(X_X_ \cdots X_\right) \cdot \left(X_X_ \cdots X_\right) = X_X_ \cdots X_X_X_ \cdots X_, and the product of two arbitrary ''R''-module elements is thus uniquely determined (because the multiplication in an ''R''-algebra must be ''R''-bilinear). This ''R''- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Open Set
A subset S of a topological space X is called a regular open set if it is equal to the interior of its closure; expressed symbolically, if \operatorname(\overline) = S or, equivalently, if \partial(\overline)=\partial S, where \operatorname S, \overline and \partial S denote, respectively, the interior, closure and boundary of S.Steen & Seebach, p. 6 A subset S of X is called a regular closed set if it is equal to the closure of its interior; expressed symbolically, if \overline = S or, equivalently, if \partial(\operatornameS)=\partial S. Examples If \Reals has its usual Euclidean topology then the open set S = (0,1) \cup (1,2) is not a regular open set, since \operatorname(\overline) = (0,2) \neq S. Every open interval in \R is a regular open set and every non-degenerate closed interval (that is, a closed interval containing at least two distinct points) is a regular closed set. A singleton \ is a closed subset of \R but not a regular closed set because its interior is the empt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Product Space
In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seeming, topology called the box topology, which can also be given to a product space and which agrees with the product topology when the product is over only finitely many spaces. However, the product topology is "correct" in that it makes the product space a categorical product of its factors, whereas the box topology is too fine; in that sense the product topology is the natural topology on the Cartesian product. Definition Throughout, I will be some non-empty index set and for every index i \in I, let X_i be a topological space. Denote the Cartesian product of the sets X_i by X := \prod X_ := \prod_ X_i and for every index i \in I, denote the i-th by \begin p_i :\;&& \prod_ X_j &&\;\to\; & X_i \\ .3ex && \left(x_j\r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Topology
In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest topology that can be given on a set. Every subset is open in the discrete topology so that in particular, every singleton subset is an open set in the discrete topology. Definitions Given a set X: A metric space (E,d) is said to be '' uniformly discrete'' if there exists a ' r > 0 such that, for any x,y \in E, one has either x = y or d(x,y) > r. The topology underlying a metric space can be discrete, without the metric being uniformly discrete: for example the usual metric on the set \left\. Properties The underlying uniformity on a discrete metric space is the discrete uniformity, and the underlying topology on a discrete uniform space is the discrete topology. Thus, the different notions of discrete space are compatible with one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boolean Algebra
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values ''true'' and ''false'', usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses logical operators such as conjunction (''and'') denoted as ∧, disjunction (''or'') denoted as ∨, and the negation (''not'') denoted as ¬. Elementary algebra, on the other hand, uses arithmetic operators such as addition, multiplication, subtraction and division. So Boolean algebra is a formal way of describing logical operations, in the same way that elementary algebra describes numerical operations. Boolean algebra was introduced by George Boole in his first book ''The Mathematical Analysis of Logic'' (1847), and set forth more fully in his '' An Investigation of the Laws of Thought'' (1854). According to Huntington, the term "Boolean algebra" wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]