HOME
*



picture info

Clique-width
In graph theory, the clique-width of a graph is a parameter that describes the structural complexity of the graph; it is closely related to treewidth, but unlike treewidth it can be bounded even for dense graphs. It is defined as the minimum number of labels needed to construct by means of the following 4 operations : #Creation of a new vertex with label (denoted by ) #Disjoint union of two labeled graphs and (denoted by G \oplus H) #Joining by an edge every vertex labeled to every vertex labeled (denoted by ), where #Renaming label to label (denoted by ) Graphs of bounded clique-width include the cographs and distance-hereditary graphs. Although it is NP-hard to compute the clique-width when it is unbounded, and unknown whether it can be computed in polynomial time when it is bounded, efficient approximation algorithms for clique-width are known. Based on these algorithms and on Courcelle's theorem, many graph optimization problems that are NP-hard for arbitrary gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Clique-width Construction
In graph theory, the clique-width of a graph is a parameter that describes the structural complexity of the graph; it is closely related to treewidth, but unlike treewidth it can be bounded even for dense graphs. It is defined as the minimum number of labels needed to construct by means of the following 4 operations : #Creation of a new vertex with label (denoted by ) #Disjoint union of two labeled graphs and (denoted by G \oplus H) #Joining by an edge every vertex labeled to every vertex labeled (denoted by ), where #Renaming label to label (denoted by ) Graphs of bounded clique-width include the cographs and distance-hereditary graphs. Although it is NP-hard to compute the clique-width when it is unbounded, and unknown whether it can be computed in polynomial time when it is bounded, efficient approximation algorithms for clique-width are known. Based on these algorithms and on Courcelle's theorem, many graph optimization problems that are NP-hard for arbitrary gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Courcelle's Theorem
In the study of graph algorithms, Courcelle's theorem is the statement that every graph property definable in the monadic second-order logic of graphs can be decided in linear time on graphs of bounded treewidth. The result was first proved by Bruno Courcelle in 1990 and independently rediscovered by . It is considered the archetype of algorithmic meta-theorems... Formulations Vertex sets In one variation of monadic second-order graph logic known as MSO1, the graph is described by a set of vertices and a binary adjacency relation \operatorname(.,.), and the restriction to monadic logic means that the graph property in question may be defined in terms of sets of vertices of the given graph, but not in terms of sets of edges, or sets of tuples of vertices. As an example, the property of a graph being colorable with three colors (represented by three sets of vertices R, G, and B) may be defined by the monadic second-order formula \begin \exists R\ \exists G\ \exists B\ \Bigl( & \fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rank-width
Rank-width is a graph width parameter used in graph theory and parameterized complexity. This parameter indicates the minimum integer ''k'' for a given graph ''G'' so that the tree can be decomposed into tree-like structures by splitting its vertices such that each cut induces a matrix of rank at most ''k''. Even though there are various other width parameters that have been shown to be very useful, but some of them like treewidth (or clique-width In graph theory, the clique-width of a graph is a parameter that describes the structural complexity of the graph; it is closely related to treewidth, but unlike treewidth it can be bounded even for dense graphs. It is defined as the minimum n ...) are bounded for only for sparse (or dense) graphs. For the dense graphs, where clique-width can be used, there is no efficient algorithm deciding this parameter. This is where rank-width comes to the picture. There exists an algorithm running in polynomial time that decides if the rank ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cograph
In graph theory, a cograph, or complement-reducible graph, or ''P''4-free graph, is a graph that can be generated from the single-vertex graph ''K''1 by complementation and disjoint union. That is, the family of cographs is the smallest class of graphs that includes ''K''1 and is closed under complementation and disjoint union. Cographs have been discovered independently by several authors since the 1970s; early references include , , , and . They have also been called D*-graphs, hereditary Dacey graphs (after the related work of James C. Dacey Jr. on orthomodular lattices), and 2-parity graphs. They have a simple structural decomposition involving disjoint union and complement graph operations that can be represented concisely by a labeled tree, and used algorithmically to efficiently solve many problems such as finding the maximum clique that are hard on more general graph classes. Special cases of the cographs include the complete graphs, complete bipartite graphs, cluster g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cograph
In graph theory, a cograph, or complement-reducible graph, or ''P''4-free graph, is a graph that can be generated from the single-vertex graph ''K''1 by complementation and disjoint union. That is, the family of cographs is the smallest class of graphs that includes ''K''1 and is closed under complementation and disjoint union. Cographs have been discovered independently by several authors since the 1970s; early references include , , , and . They have also been called D*-graphs, hereditary Dacey graphs (after the related work of James C. Dacey Jr. on orthomodular lattices), and 2-parity graphs. They have a simple structural decomposition involving disjoint union and complement graph operations that can be represented concisely by a labeled tree, and used algorithmically to efficiently solve many problems such as finding the maximum clique that are hard on more general graph classes. Special cases of the cographs include the complete graphs, complete bipartite graphs, cluster g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Distance-hereditary Graph
In graph theory, a branch of discrete mathematics, a distance-hereditary graph (also called a completely separable graph) is a graph in which the distances in any connected induced subgraph are the same as they are in the original graph. Thus, any induced subgraph inherits the distances of the larger graph. Distance-hereditary graphs were named and first studied by , although an equivalent class of graphs was already shown to be perfect in 1970 by Olaru and Sachs. It has been known for some time that the distance-hereditary graphs constitute an intersection class of graphs, but no intersection model was known until one was given by . Definition and characterization The original definition of a distance-hereditary graph is a graph such that, if any two vertices and belong to a connected induced subgraph of , then some shortest path connecting and in must be a subgraph of , so that the distance between and in is the same as the distance in . Distance-hereditary graphs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leaf Power
In the mathematical area of graph theory, a -leaf power of a tree is a graph whose vertices are the leaves of and whose edges connect pairs of leaves whose distance in is at most . That is, is an induced subgraph of the graph power , induced by the leaves of . For a graph constructed in this way, is called a -leaf root of . A graph is a leaf power if it is a -leaf power for some . These graphs have applications in phylogeny, the problem of reconstructing evolutionary trees. Related classes of graphs Since powers of strongly chordal graphs are strongly chordal and trees are strongly chordal, it follows that leaf powers are strongly chordal graphs. Actually, leaf powers form a proper subclass of strongly chordal graphs; a graph is a leaf power if and only if it is a fixed tolerance NeST graph and such graphs are a proper subclass of strongly chordal graphs. In it is shown that interval graphs and the larger class of rooted directed path graphs are leaf powers. The indi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Power
In graph theory, a branch of mathematics, the th power of an undirected graph is another graph that has the same set of vertices, but in which two vertices are adjacent when their distance in is at most . Powers of graphs are referred to using terminology similar to that of exponentiation of numbers: is called the ''square'' of , is called the ''cube'' of , etc. Graph powers should be distinguished from the products of a graph with itself, which (unlike powers) generally have many more vertices than the original graph. Properties If a graph has diameter , then its -th power is the complete graph. If a graph family has bounded clique-width, then so do its -th powers for any fixed . Coloring Graph coloring on the square of a graph may be used to assign frequencies to the participants of wireless communication networks so that no two participants interfere with each other at any of their common neighbors, and to find graph drawings with high angular resolution. Both th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynamic Programming
Dynamic programming is both a mathematical optimization method and a computer programming method. The method was developed by Richard Bellman in the 1950s and has found applications in numerous fields, from aerospace engineering to economics. In both contexts it refers to simplifying a complicated problem by breaking it down into simpler sub-problems in a recursive manner. While some decision problems cannot be taken apart this way, decisions that span several points in time do often break apart recursively. Likewise, in computer science, if a problem can be solved optimally by breaking it into sub-problems and then recursively finding the optimal solutions to the sub-problems, then it is said to have '' optimal substructure''. If sub-problems can be nested recursively inside larger problems, so that dynamic programming methods are applicable, then there is a relation between the value of the larger problem and the values of the sub-problems.Cormen, T. H.; Leiserson, C. E.; R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


χ-bounded
In graph theory, a \chi-bounded family \mathcal of graphs is one for which there is some function c such that, for every integer t the graphs in \mathcal with t=\omega(G) (clique number) can be colored with at most c(t) colors. This concept and its notation were formulated by András Gyárfás. The use of the Greek letter chi in the term \chi-bounded is based on the fact that the chromatic number of a graph G is commonly denoted \chi(G). Nontriviality It is not true that the family of all graphs is \chi-bounded. As and showed, there exist triangle-free graphs of arbitrarily large chromatic number, so for these graphs it is not possible to define a finite value of t(3). Thus, \chi-boundedness is a nontrivial concept, true for some graph families and false for others. Specific classes Every class of graphs of bounded chromatic number is (trivially) \chi-bounded, with c(t) equal to the bound on the chromatic number. This includes, for instance, the planar graphs, the bipartite gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Coloring
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex coloring of its dual. However, non-vertex coloring problems are often stated and studied as-is. This ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complete Bipartite Graph
In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set..Electronic edition page 17. Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of Königsberg. However, drawings of complete bipartite graphs were already printed as early as 1669, in connection with an edition of the works of Ramon Llull edited by Athanasius Kircher. Llull himself had made similar drawings of complete graphs three centuries earlier.. Definition A complete bipartite graph is a graph whose vertices can be partitioned into two subsets and such that no edge has both endpoints in the same subset, and every possible edge that could connect vertices in different subsets is part of the graph. That is, it is a bipartite graph such that for every two vertices and, is an edge in . A complete bipartite graph wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]