Classic RISC Pipeline
   HOME
*



picture info

Classic RISC Pipeline
In the history of computer hardware, some early reduced instruction set computer central processing units (RISC CPUs) used a very similar architectural solution, now called a classic RISC pipeline. Those CPUs were: MIPS, SPARC, Motorola 88000, and later the notional CPU DLX invented for education. Each of these classic scalar RISC designs fetches and tries to execute one instruction per cycle. The main common concept of each design is a five-stage execution instruction pipeline. During operation, each pipeline stage works on one instruction at a time. Each of these stages consists of a set of flip-flops to hold state, and combinational logic that operates on the outputs of those flip-flops. The classic five stage RISC pipeline Instruction fetch The instructions reside in memory that takes one cycle to read. This memory can be dedicated to SRAM, or an Instruction Cache. The term "latency" is used in computer science often and means the time from when an operation starts ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

History Of Computing Hardware
The history of computing hardware covers the developments from early simple devices to aid calculation to modern day computers. Before the 20th century, most calculations were done by humans. The first aids to computation were purely mechanical devices which required the operator to set up the initial values of an elementary arithmetic operation, then manipulate the device to obtain the result. Later, computers represented numbers in a continuous form (e.g. distance along a scale, rotation of a shaft, or a voltage). Numbers could also be represented in the form of digits, automatically manipulated by a mechanism. Although this approach generally required more complex mechanisms, it greatly increased the precision of results. The development of transistor technology and then the integrated circuit chip led to a series of breakthroughs, starting with transistor computers and then integrated circuit computers, causing digital computers to largely replace analog computers. Meta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Microcode
In processor design, microcode (μcode) is a technique that interposes a layer of computer organization between the central processing unit (CPU) hardware and the programmer-visible instruction set architecture of a computer. Microcode is a layer of hardware-level instructions that implement higher-level machine code instructions or internal finite-state machine sequencing in many digital processing elements. Microcode is used in general-purpose central processing units, although in current desktop CPUs, it is only a fallback path for cases that the faster hardwired control unit cannot handle. Microcode typically resides in special high-speed memory and translates machine instructions, state machine data, or other input into sequences of detailed circuit-level operations. It separates the machine instructions from the underlying electronics so that instructions can be designed and altered more freely. It also facilitates the building of complex multi-step instructions, whil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Data Forwarding (Two Stage)
In the pursuit of knowledge, data (; ) is a collection of discrete values that convey information, describing quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpreted. A datum is an individual value in a collection of data. Data is usually organized into structures such as tables that provide additional context and meaning, and which may themselves be used as data in larger structures. Data may be used as variables in a computational process. Data may represent abstract ideas or concrete measurements. Data is commonly used in scientific research, economics, and in virtually every other form of human organizational activity. Examples of data sets include price indices (such as consumer price index), unemployment rates, literacy rates, and census data. In this context, data represents the raw facts and figures which can be used in such a manner in order to capture the useful information out of it. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Data Forwarding (Two Stage, Error)
In the pursuit of knowledge, data (; ) is a collection of discrete values that convey information, describing quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpreted. A datum is an individual value in a collection of data. Data is usually organized into structures such as tables that provide additional context and meaning, and which may themselves be used as data in larger structures. Data may be used as variables in a computational process. Data may represent abstract ideas or concrete measurements. Data is commonly used in scientific research, economics, and in virtually every other form of human organizational activity. Examples of data sets include price indices (such as consumer price index), unemployment rates, literacy rates, and census data. In this context, data represents the raw facts and figures which can be used in such a manner in order to capture the useful information out of it. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Data Forwarding (One Stage)
In the pursuit of knowledge, data (; ) is a collection of discrete values that convey information, describing quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpreted. A datum is an individual value in a collection of data. Data is usually organized into structures such as tables that provide additional context and meaning, and which may themselves be used as data in larger structures. Data may be used as variables in a computational process. Data may represent abstract ideas or concrete measurements. Data is commonly used in scientific research, economics, and in virtually every other form of human organizational activity. Examples of data sets include price indices (such as consumer price index), unemployment rates, literacy rates, and census data. In this context, data represents the raw facts and figures which can be used in such a manner in order to capture the useful information out of it. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bubble (computing)
In the design of pipelined computer processors, a pipeline stall is a delay in execution of an instruction in order to resolve a hazard. Details In a standard five-stage pipeline, during the decoding stage, the control unit will determine whether the decoded instruction reads from a register to which the currently executed instruction writes. If this condition holds, the control unit will stall the instruction by one clock cycle. It also stalls the instruction in the fetch stage, to prevent the instruction in that stage from being overwritten by the next instruction in the program. In a Von Neumann architecture which uses the program counter (PC) register to determine the current instruction being fetched in the pipeline, to prevent new instructions from being fetched when an instruction in the decoding stage has been stalled, the value in the PC register and the instruction in the fetch stage are preserved to prevent changes. The values are preserved until the instruction c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pipeline Data Hazard
Pipeline may refer to: Electronics, computers and computing * Pipeline (computing), a chain of data-processing stages or a CPU optimization found on ** Instruction pipelining, a technique for implementing instruction-level parallelism within a single processor *** Classic RISC pipeline, a five-stage hardware based computer instruction set ** Pipeline (software), a chain of data-processing processes or other software entities *** Pipeline (Unix), a set of process chained by their ''standard streams'' *** XML pipeline, a connection of XML transformations *** CMS Pipelines, an improvement on UNIX piping. Allows multiple streams, moves pointers rather than data, is predictable. ** Graphics pipeline, the method of rasterization-based rendering as supported by graphics hardware * Pipelining (DSP implementation), a transformation for optimizing digital circuit * Telestream pipeline, a video capture and playout hardware device Physical infrastructure * Pipeline transport, a conduit m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Operand Forwarding
Operand forwarding (or data forwarding) is an optimization in pipelined CPUs to limit performance deficits which occur due to pipeline stalls. A data hazard can lead to a pipeline stall when the current operation has to wait for the results of an earlier operation which has not yet finished. Example ADD A B C #A=B+C SUB D C A #D=C-A If these two assembly pseudocode instructions run in a pipeline, after fetching and decoding the second instruction, the pipeline stalls, waiting until the result of the addition is written and read. In some cases all stalls from such read-after-write data hazards can be completely eliminated by operand forwarding: Larry Snyder"Pipeline Review" Technical realization The CPU control unit must implement logic to detect dependencies where operand forwarding makes sense. A multiplexer can then be used to select the proper register or flip-flop to read the operand from. See also *Feed forward (control) A feed forward (sometimes writt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hazard (computer Architecture)
In the domain of central processing unit (CPU) design, hazards are problems with the instruction pipeline in CPU microarchitectures when the next instruction cannot execute in the following clock cycle, and can potentially lead to incorrect computation results. Three common types of hazards are data hazards, structural hazards, and control hazards (branching hazards). There are several methods used to deal with hazards, including pipeline stalls/pipeline bubbling, operand forwarding, and in the case of out-of-order execution, the scoreboarding method and the Tomasulo algorithm. Background Instructions in a pipelined processor are performed in several stages, so that at any given time several instructions are being processed in the various stages of the pipeline, such as fetch and execute. There are many different instruction pipeline microarchitectures, and instructions may be executed out-of-order. A hazard occurs when two or more of these simultaneous (possibly out of or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Static RAM
Static random-access memory (static RAM or SRAM) is a type of random-access memory (RAM) that uses latching circuitry (flip-flop) to store each bit. SRAM is volatile memory; data is lost when power is removed. The term ''static'' differentiates SRAM from DRAM (''dynamic'' random-access memory) — SRAM will hold its data permanently in the presence of power, while data in DRAM decays in seconds and thus must be periodically refreshed. SRAM is faster than DRAM but it is more expensive in terms of silicon area and cost; it is typically used for the cache and internal registers of a CPU while DRAM is used for a computer's main memory. History Semiconductor bipolar SRAM was invented in 1963 by Robert Norman at Fairchild Semiconductor. MOS SRAM was invented in 1964 by John Schmidt at Fairchild Semiconductor. It was a 64-bit MOS p-channel SRAM. The SRAM was the main driver behind any new CMOS-based technology fabrication process since 1959 when CMOS was invented. In 1965, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CPU Cache
A CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from the main memory. A cache is a smaller, faster memory, located closer to a processor core, which stores copies of the data from frequently used main memory locations. Most CPUs have a hierarchy of multiple cache levels (L1, L2, often L3, and rarely even L4), with different instruction-specific and data-specific caches at level 1. The cache memory is typically implemented with static random-access memory (SRAM), in modern CPUs by far the largest part of them by chip area, but SRAM is not always used for all levels (of I- or D-cache), or even any level, sometimes some latter or all levels are implemented with eDRAM. Other types of caches exist (that are not counted towards the "cache size" of the most important caches mentioned above), such as the translation lookaside buffer (TLB) which is part of the memory management unit (MMU) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Floating-point
In computing, floating-point arithmetic (FP) is arithmetic that represents real numbers approximately, using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. For example, 12.345 can be represented as a base-ten floating-point number: 12.345 = \underbrace_\text \times \underbrace_\text\!\!\!\!\!\!^ In practice, most floating-point systems use base two, though base ten ( decimal floating point) is also common. The term ''floating point'' refers to the fact that the number's radix point can "float" anywhere to the left, right, or between the significant digits of the number. This position is indicated by the exponent, so floating point can be considered a form of scientific notation. A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floatin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]