Cissoid
   HOME
*



picture info

Cissoid
In geometry, a cissoid (() is a plane curve generated from two given curves , and a point (the pole). Let be a variable line passing through and intersecting at and at . Let be the point on so that \overline = \overline. (There are actually two such points but is chosen so that is in the same direction from as is from .) Then the locus of such points is defined to be the cissoid of the curves , relative to . Slightly different but essentially equivalent definitions are used by different authors. For example, may be defined to be the point so that \overline = \overline + \overline. This is equivalent to the other definition if is replaced by its reflection through . Or may be defined as the midpoint of and ; this produces the curve generated by the previous curve scaled by a factor of 1/2. Equations If and are given in polar coordinates by r=f_1(\theta) and r=f_2(\theta) respectively, then the equation r=f_2(\theta)-f_1(\theta) describes the cissoid of and r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cissoid Of Diocles
In geometry, the cissoid of Diocles (; named for Diocles) is a cubic plane curve notable for the property that it can be used to construct two mean proportionals to a given ratio. In particular, it can be used to double a cube. It can be defined as the cissoid of a circle and a line tangent to it with respect to the point on the circle opposite to the point of tangency. In fact, the curve family of cissoids is named for this example and some authors refer to it simply as ''the'' cissoid. It has a single cusp at the pole, and is symmetric about the diameter of the circle which is the line of tangency of the cusp. The line is an asymptote. It is a member of the conchoid of de Sluze family of curves and in form it resembles a tractrix. Construction and equations Let the radius of be . By translation and rotation, we may take to be the origin and the center of the circle to be (''a'', 0), so is . Then the polar equations of and are: :\begin & r=2a\sec\theta \\ & r=2a\cos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Right Strophoid
In geometry, a strophoid is a curve generated from a given curve and points (the fixed point) and (the pole) as follows: Let be a variable line passing through and intersecting at . Now let and be the two points on whose distance from is the same as the distance from to (i.e. ). The locus of such points and is then the strophoid of with respect to the pole and fixed point . Note that and are at right angles in this construction. In the special case where is a line, lies on , and is not on , then the curve is called an oblique strophoid. If, in addition, is perpendicular to then the curve is called a right strophoid, or simply ''strophoid'' by some authors. The right strophoid is also called the logocyclic curve or foliate. Equations Polar coordinates Let the curve be given by r = f(\theta), where the origin is taken to be . Let be the point . If K = (r \cos\theta,\ r \sin\theta) is a point on the curve the distance from to is :d = \sqrt = \sqrt. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Strophoid
In geometry, a strophoid is a curve generated from a given curve and points (the fixed point) and (the pole) as follows: Let be a variable line passing through and intersecting at . Now let and be the two points on whose distance from is the same as the distance from to (i.e. ). The locus of such points and is then the strophoid of with respect to the pole and fixed point . Note that and are at right angles in this construction. In the special case where is a line, lies on , and is not on , then the curve is called an oblique strophoid. If, in addition, is perpendicular to then the curve is called a right strophoid, or simply ''strophoid'' by some authors. The right strophoid is also called the logocyclic curve or foliate. Equations Polar coordinates Let the curve be given by r = f(\theta), where the origin is taken to be . Let be the point . If K = (r \cos\theta,\ r \sin\theta) is a point on the curve the distance from to is :d = \sqrt = \sqrt. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conchoid (mathematics)
In geometry, a conchoid is a curve derived from a fixed point , another curve, and a length . It was invented by the ancient Greek mathematician Nicomedes. Description For every line through that intersects the given curve at the two points on the line which are from are on the conchoid. The conchoid is, therefore, the cissoid of the given curve and a circle of radius and center . They are called ''conchoids'' because the shape of their outer branches resembles conch shells. The simplest expression uses polar coordinates with at the origin. If :r=\alpha(\theta) expresses the given curve, then :r=\alpha(\theta)\pm d expresses the conchoid. If the curve is a line, then the conchoid is the ''conchoid of Nicomedes''. For instance, if the curve is the line , then the line's polar form is and therefore the conchoid can be expressed parametrically as :x=a \pm d \cos \theta,\, y=a \tan \theta \pm d \sin \theta. A limaçon is a conchoid with a circle as the given curve. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conchoid (mathematics)
In geometry, a conchoid is a curve derived from a fixed point , another curve, and a length . It was invented by the ancient Greek mathematician Nicomedes. Description For every line through that intersects the given curve at the two points on the line which are from are on the conchoid. The conchoid is, therefore, the cissoid of the given curve and a circle of radius and center . They are called ''conchoids'' because the shape of their outer branches resembles conch shells. The simplest expression uses polar coordinates with at the origin. If :r=\alpha(\theta) expresses the given curve, then :r=\alpha(\theta)\pm d expresses the conchoid. If the curve is a line, then the conchoid is the ''conchoid of Nicomedes''. For instance, if the curve is the line , then the line's polar form is and therefore the conchoid can be expressed parametrically as :x=a \pm d \cos \theta,\, y=a \tan \theta \pm d \sin \theta. A limaçon is a conchoid with a circle as the given curve. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Curves
A curve is a geometrical object in mathematics. Curve(s) may also refer to: Arts, entertainment, and media Music * Curve (band), an English alternative rock music group * ''Curve'' (album), a 2012 album by Our Lady Peace * "Curve" (song), a 2017 song by Gucci Mane featuring The Weeknd * ''Curve'', a 2001 album by Doc Walker * "Curve", a song by John Petrucci from ''Suspended Animation'', 2005 * "Curve", a song by Cam'ron from the album '' Crime Pays'', 2009 Periodicals * ''Curve'' (design magazine), an industrial design magazine * ''Curve'' (magazine), a U.S. lesbian magazine Other uses in arts, entertainment, and media * ''Curve'' (film), a 2015 film * BBC Two 'Curve' idents, various animations based around a curve motif Brands and enterprises *Curve (payment card), a payment card that aggregates multiple payment cards * Curve (theatre), a theatre in Leicester, United Kingdom * Curve, fragrance by Liz Claiborne * BlackBerry Curve, a series of phones from Research in Motio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ellipse
In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity (mathematics), eccentricity e, a number ranging from e = 0 (the Limiting case (mathematics), limiting case of a circle) to e = 1 (the limiting case of infinite elongation, no longer an ellipse but a parabola). An ellipse has a simple algebraic solution for its area, but only approximations for its perimeter (also known as circumference), for which integration is required to obtain an exact solution. Analytic geometry, Analytically, the equation of a standard ellipse centered at the origin with width 2a and height 2b is: : \frac+\frac = 1 . Assuming a \ge b, the foci are (\pm c, 0) for c = \sqrt. The standard parametric e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Folium Of Descartes
In geometry, the folium of Descartes (; named for René Decartes) is an algebraic curve defined by the implicit equation :x^3 + y^3 - 3 a x y = 0. History The curve was first proposed and studied by René Descartes in 1638. Its claim to fame lies in an incident in the development of calculus. Descartes challenged Pierre de Fermat to find the tangent line to the curve at an arbitrary point since Fermat had recently discovered a method for finding tangent lines. Fermat solved the problem easily, something Descartes was unable to do. Since the invention of calculus, the slope of the tangent line can be found easily using implicit differentiation. Graphing the curve The folium of Descartes can be expressed in polar coordinates as :r = \frac, which is plotted on the left. This is equivalent to r = \frac. Another technique is to write y = px and solve for x and y in terms of p. This yields the rational parametric equations: x = ,\, y = . We can see that the parameter is rela ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conchoid Of De Sluze
In algebraic geometry, the conchoids of de Sluze are a family of plane curves studied in 1662 by Walloon mathematician René François Walter, baron de Sluze.. The curves are defined by the polar equation :r=\sec\theta+a\cos\theta \,. In cartesian coordinates, the curves satisfy the implicit equation :(x-1)(x^2+y^2)=ax^2 \, except that for the implicit form has an acnode not present in polar form. They are rational, circular, cubic plane curves. These expressions have an asymptote (for ). The point most distant from the asymptote is . is a crunode for . The area between the curve and the asymptote is, for , :, a, (1+a/4)\pi \, while for , the area is :\left(1-\frac a2\right)\sqrt-a\left(2+\frac a2\right)\arcsin\frac1. If , the curve will have a loop. The area of the loop is :\left(2+\frac a2\right)a\arccos\frac1 + \left(1-\frac a2\right)\sqrt. Four of the family have names of their own: *, line (asymptote to the rest of the family) *, cissoid of Diocles *, right stroph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]