Choice Function
   HOME
*





Choice Function
A choice function (selector, selection) is a mathematical function ''f'' that is defined on some collection ''X'' of nonempty sets and assigns some element of each set ''S'' in that collection to ''S'' by ''f''(''S''); ''f''(''S'') maps ''S'' to some element of ''S''. In other words, ''f'' is a choice function for ''X'' if and only if it belongs to the direct product of ''X''. An example Let ''X'' = . Then the function that assigns 7 to the set , 9 to , and 2 to is a choice function on ''X''. History and importance Ernst Zermelo (1904) introduced choice functions as well as the axiom of choice (AC) and proved the well-ordering theorem, which states that every set can be well-ordered. AC states that every set of nonempty sets has a choice function. A weaker form of AC, the axiom of countable choice (ACω) states that every countable set of nonempty sets has a choice function. However, in the absence of either AC or ACω, some sets can still be shown to have a ch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Function
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the function and the set is called the codomain of the function.Codomain ''Encyclopedia of Mathematics'Codomain. ''Encyclopedia of Mathematics''/ref> The earliest known approach to the notion of function can be traced back to works of Persian mathematicians Al-Biruni and Sharaf al-Din al-Tusi. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Power Set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of is variously denoted as , , , \mathbb(S), or . The notation , meaning the set of all functions from S to a given set of two elements (e.g., ), is used because the powerset of can be identified with, equivalent to, or bijective to the set of all the functions from to the given two elements set. Any subset of is called a ''family of sets'' over . Example If is the set , then all the subsets of are * (also denoted \varnothing or \empty, the empty set or the null set) * * * * * * * and hence the power set of is . Properties If is a finite set with the cardinality (i.e., the number of all elements in the set is ), then the number of all the subsets of is . This fact as we ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hemicontinuity
In mathematics, the notion of the continuity of functions is not immediately extensible to multivalued mappings or correspondences between two sets ''A'' and ''B''. The dual concepts of upper hemicontinuity and lower hemicontinuity facilitate such an extension. A correspondence that has both properties is said to be continuous in an analogy to the property of the same name for functions. Roughly speaking, a function is upper hemicontinuous if when (1) a convergent sequence of points in the domain maps to a sequence of sets in the range which (2) contain another convergent sequence, then the image of the limiting point in the domain must contain the limit of the sequence in the range. Lower hemicontinuity essentially reverses this, saying if a sequence in the domain converges, given a point in the range of the limit, then you can find a sub-sequence whose image contains a convergent sequence to the given point. Upper hemicontinuity A correspondence \Gamma : A \to B is said ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hausdorff Paradox
The Hausdorff paradox is a paradox in mathematics named after Felix Hausdorff. It involves the sphere (a 3-dimensional sphere in ). It states that if a certain countable subset is removed from , then the remainder can be divided into three disjoint subsets and such that and are all congruent. In particular, it follows that on S^2 there is no finitely additive measure defined on all subsets such that the measure of congruent sets is equal (because this would imply that the measure of is simultaneously 1/3, 1/2, and 2/3 of the non-zero measure of the whole sphere). The paradox was published in ''Mathematische Annalen'' in 1914 and also in Hausdorff's book, ''Grundzüge der Mengenlehre'', the same year. The proof of the much more famous Banach–Tarski paradox uses Hausdorff's ideas. The proof of this paradox relies on the axiom of choice. This paradox shows that there is no finitely additive measure on a sphere defined on ''all'' subsets which is equal on congruent pieces. ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Axiom Of Countable Choice
The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function ''A'' with domain N (where N denotes the set of natural numbers) such that ''A''(''n'') is a non-empty set for every ''n'' ∈ N, there exists a function ''f'' with domain N such that ''f''(''n'') ∈ ''A''(''n'') for every ''n'' ∈ N. Overview The axiom of countable choice (ACω) is strictly weaker than the axiom of dependent choice (DC), which in turn is weaker than the axiom of choice (AC). Paul Cohen showed that ACω is not provable in Zermelo–Fraenkel set theory (ZF) without the axiom of choice . ACω holds in the Solovay model. ZF+ACω suffices to prove that the union of countably many countable sets is countable. It also suffices to prove that every infinite set is Dedekind-infinite (equivalently: has a countably infinite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Of Global Choice
In mathematics, specifically in class theories, the axiom of global choice is a stronger variant of the axiom of choice that applies to proper classes of sets as well as sets of sets. Informally it states that one can simultaneously choose an element from every non-empty set. Statement The axiom of global choice states that there is a global choice function τ, meaning a function such that for every non-empty set ''z'', τ(''z'') is an element of ''z''. The axiom of global choice cannot be stated directly in the language of ZFC ( Zermelo–Fraenkel set theory with the axiom of choice), as the choice function τ is a proper class and in ZFC one cannot quantify over classes. It can be stated by adding a new function symbol τ to the language of ZFC, with the property that τ is a global choice function. This is a conservative extension of ZFC: every provable statement of this extended theory that can be stated in the language of ZFC is already provable in ZFC . Alternatively ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Epsilon Calculus
Hilbert's epsilon calculus is an extension of a formal language by the epsilon operator, where the epsilon operator substitutes for quantifiers in that language as a method leading to a proof of consistency for the extended formal language. The ''epsilon operator'' and ''epsilon substitution method'' are typically applied to a first-order predicate calculus, followed by a showing of consistency. The epsilon-extended calculus is further extended and generalized to cover those mathematical objects, classes, and categories for which there is a desire to show consistency, building on previously-shown consistency at earlier levels. Epsilon operator Hilbert notation For any formal language ''L'', extend ''L'' by adding the epsilon operator to redefine quantification: * (\exists x) A(x)\ \equiv \ A(\epsilon x\ A) * (\forall x) A(x)\ \equiv \ A(\epsilon x\ (\neg A)) The intended interpretation of ϵ''x'' ''A'' is ''some x'' that satisfies ''A'', if it exists. In other words, ϵ''x' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nicolas Bourbaki
Nicolas Bourbaki () is the collective pseudonym of a group of mathematicians, predominantly French alumni of the École normale supérieure - PSL (ENS). Founded in 1934–1935, the Bourbaki group originally intended to prepare a new textbook in analysis. Over time the project became much more ambitious, growing into a large series of textbooks published under the Bourbaki name, meant to treat modern pure mathematics. The series is known collectively as the '' Éléments de mathématique'' (''Elements of Mathematics''), the group's central work. Topics treated in the series include set theory, abstract algebra, topology, analysis, Lie groups and Lie algebras. Bourbaki was founded in response to the effects of the First World War which caused the death of a generation of French mathematicians; as a result, young university instructors were forced to use dated texts. While teaching at the University of Strasbourg, Henri Cartan complained to his colleague André Weil of the inade ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Selection Theorem
In functional analysis, a branch of mathematics, a selection theorem is a theorem that guarantees the existence of a single-valued selection function from a given set-valued map. There are various selection theorems, and they are important in the theories of differential inclusions, optimal control, and mathematical economics. Preliminaries Given two sets ''X'' and ''Y'', let ''F'' be a set-valued function from ''X'' and ''Y''. Equivalently, F:X\rightarrow\mathcal(Y) is a function from ''X'' to the power set of ''Y''. A function f: X \rightarrow Y is said to be a selection of ''F'' if : \forall x \in X: \,\,\, f(x) \in F(x) \,. In other words, given an input ''x'' for which the original function ''F'' returns multiple values, the new function ''f'' returns a single value. This is a special case of a choice function. The axiom of choice implies that a selection function always exists; however, it is often important that the selection have some "nice" properties, such as con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Economics
Mathematical economics is the application of mathematical methods to represent theories and analyze problems in economics. Often, these applied methods are beyond simple geometry, and may include differential and integral calculus, difference and differential equations, matrix algebra, mathematical programming, or other computational methods. Proponents of this approach claim that it allows the formulation of theoretical relationships with rigor, generality, and simplicity. Mathematics allows economists to form meaningful, testable propositions about wide-ranging and complex subjects which could less easily be expressed informally. Further, the language of mathematics allows economists to make specific, positive claims about controversial or contentious subjects that would be impossible without mathematics. Much of economic theory is currently presented in terms of mathematical economic models, a set of stylized and simplified mathematical relationships asserted to clarif ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optimal Control
Optimal control theory is a branch of mathematical optimization that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and operations research. For example, the dynamical system might be a spacecraft with controls corresponding to rocket thrusters, and the objective might be to reach the moon with minimum fuel expenditure. Or the dynamical system could be a nation's economy, with the objective to minimize unemployment; the controls in this case could be fiscal and monetary policy. A dynamical system may also be introduced to embed operations research problems within the framework of optimal control theory. Optimal control is an extension of the calculus of variations, and is a mathematical optimization method for deriving control policies. The method is largely due to the work of Lev Pontryagin and Richard Bellman in the 1950s, after contributions to calcu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Inclusion
In mathematics, differential inclusions are a generalization of the concept of ordinary differential equation of the form :\frac(t)\in F(t,x(t)), where ''F'' is a multivalued map, i.e. ''F''(''t'', ''x'') is a ''set'' rather than a single point in \R^d. Differential inclusions arise in many situations including differential variational inequalities, projected dynamical systems, Moreau's sweeping process, linear and nonlinear complementarity dynamical systems, discontinuous ordinary differential equations, switching dynamical systems, and fuzzy set arithmetic. For example, the basic rule for Coulomb friction is that the friction force has magnitude ''μN'' in the direction opposite to the direction of slip, where ''N'' is the normal force and ''μ'' is a constant (the friction coefficient). However, if the slip is zero, the friction force can be ''any'' force in the correct plane with magnitude smaller than or equal to ''μN''. Thus, writing the friction force as a function o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]