Chirped Mirror
   HOME
*





Chirped Mirror
A chirped mirror is a dielectric mirror with chirped spaces—spaces of varying depth designed to reflect varying wavelengths of lights—between the dielectric layers (stack). Chirped mirrors are used in applications like lasers to reflect a wider range of light wavelengths than ordinary dielectric mirrors, or to compensate for the dispersion of wavelengths that can be created by some optical elements. Chirped mirrors are also found in structurally colored biological systems, including the shiny golden and silver color of certain beetles' elytra, e.g. those of the Ruteline genus ''Chrysina''. In these cases, the chirped mirror generates complex color (such as gold or silver) when illuminated by white light by simultaneously reflecting a broad range of monochromatic colors. Simple explanation An ordinary dielectric mirror is made to reflect a single frequency of light. The dielectric mirror is made of transparent materials that are uniformly layered at a depth of 1/4 the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


DBR SEM
DBR may refer to: * Daniel Bernard Roumain, composer and violinist * New Zealand DB class locomotive, DBR Class of diesel locomotive, New Zealand * ''De Bellis Renationis'', renaissance wargaming rules * Design-based research in the learning sciences * Deuterium bromide, chemical formula DBr * Distributed Bragg reflector, used in waveguides * Dowel bar retrofit, highway crack treatment * Drum-Buffer-Rope, in the theory of constraints * ДБР, State Bureau of Investigation (Ukraine) Codes

* Bad Doberan (district), Bad Doberan, Germany, vehicle license plate * Derby Road (Ipswich) railway station, National Rail code DBR * DutchBird, airline ICAO code DBR * Dobrolet (low-cost airline), airline ICAO code DBR {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brewster's Angle
Brewster's angle (also known as the polarization angle) is an angle of incidence at which light with a particular polarization is perfectly transmitted through a transparent dielectric surface, with ''no reflection''. When ''unpolarized'' light is incident at this angle, the light that is reflected from the surface is therefore perfectly polarized. This special angle of incidence is named after the Scottish physicist Sir David Brewster (1781–1868). Explanation When light encounters a boundary between two media with different refractive indices, some of it is usually reflected as shown in the figure above. The fraction that is reflected is described by the Fresnel equations, and depends on the incoming light's polarization and angle of incidence. The Fresnel equations predict that light with the ''p'' polarization (electric field polarized in the same plane as the incident ray and the surface normal at the point of incidence) will not be reflected if the angle of incidence is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chitin
Chitin ( C8 H13 O5 N)n ( ) is a long-chain polymer of ''N''-acetylglucosamine, an amide derivative of glucose. Chitin is probably the second most abundant polysaccharide in nature (behind only cellulose); an estimated 1 billion tons of chitin are produced each year in the biosphere. It is a primary component of cell walls in fungi (especially basidiomycetes and filamentous fungi), the exoskeletons of arthropods such as crustaceans and insects, the radulae, cephalopod beaks and gladii of molluscs and in some nematodes and diatoms. It is also synthesised by at least some fish and lissamphibians. Commercially, chitin is extracted from the shells of crabs, shrimps, shellfishes and lobsters, which are major by-products of the seafood industry. The structure of chitin is comparable to cellulose, forming crystalline nanofibrils or whiskers. It is functionally comparable to the protein keratin. Chitin has proved useful for several medicinal, industrial and biotechnological purpos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chrysina Limbata
''Chrysina limbata'' is a species of scarab beetle found in the tropical rainforests of Central America, including Costa Rica, and Mexico. It is in the genus '' Chrysina'', in the subfamily Rutelinae (shining leaf chafers). It is notable for its metallic reflective silver color. Taxonomy ''Chrysina limbata'' was described in 1894 by zoologists Walter Rothschild and Karl Jordan, initially as ''Plusiotis limbata'' - ''Plusiotis'' being a synonym of ''Chrysina.'' ''C. limbata'' is in the superfamily Scarabaeoidea, family Scarabaeidae, subfamily Rutelinae and tribe Rutelini. Description ''C. limbata'' measures between 25 and 35 mm in length. They have a reflective silver metallic appearance which is achieved through thin film interference within layers of chitin. These layers of the chitin coating are chirped (in layers of differing thicknesses), forming a complex multilayer as each layer decreases in depth; as the thickness changes, so too does the optical path-length. Each ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scarab Beetle
The family Scarabaeidae, as currently defined, consists of over 30,000 species of beetles worldwide; they are often called scarabs or scarab beetles. The classification of this family has undergone significant change in recent years. Several subfamilies have been elevated to family rank (e.g., Bolboceratidae, Geotrupidae, Glaresidae, Glaphyridae, Hybosoridae, Ochodaeidae, and Pleocomidae), and some reduced to lower ranks. The subfamilies listed in this article are in accordance with those in Bouchard (2011). Description Scarabs are stout-bodied beetles, many with bright metallic colours, measuring between . They have distinctive, clubbed antennae composed of plates called lamellae that can be compressed into a ball or fanned out like leaves to sense odours. Many species are fossorial, with legs adapted for digging. In some groups males (and sometimes females) have prominent horns on the head and/or pronotum to fight over mates or resources. The largest fossil scarabae ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Chirped Pulse Amplification
Chirped pulse amplification (CPA) is a technique for amplifying an ultrashort laser pulse up to the petawatt level, with the laser pulse being stretched out temporally and spectrally, then amplified, and then compressed again. The stretching and compression uses devices that ensure that the different color components of the pulse travel different distances. CPA for lasers was introduced by Donna Strickland and Gérard Mourou at the University of Rochester in the mid-1980s, work for which they received the Nobel Prize in Physics in 2018. CPA is the current state-of-the-art technique used by most of the highest-power lasers in the world. Background Before the introduction of CPA in the mid-1980s, the peak power of laser pulses was limited because a laser pulse at intensities of gigawatts per square centimeter causes serious damage to the gain medium through nonlinear processes such as self-focusing. For example, some of the most powerful compressed CPA laser beams, even in an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Self-phase Modulation
Self-phase modulation (SPM) is a nonlinear optical effect of light–matter interaction. An ultrashort pulse of light, when travelling in a medium, will induce a varying refractive index of the medium due to the optical Kerr effect. This variation in refractive index will produce a phase shift in the pulse, leading to a change of the pulse's frequency spectrum. Self-phase modulation is an important effect in optical systems that use short, intense pulses of light, such as lasers and optical fiber communications systems. Self-phase modulation has also been reported for nonlinear sound waves propagating in biological thin films, where the phase modulation results from varying elastic properties of the lipid films. Theory with Kerr nonlinearity The evolution along distance ''z'' of the equivalent lowpass electric field ''A(z)'' obeys the nonlinear Schrödinger equation which, in absence of dispersion, is: :\frac = -j\gamma \left, A(z)\^2 A(z) with ''j'' the imaginary unit and ''Π...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kerr-lens Modelocking
Kerr-lens mode-locking (KLM) is a method of mode-locking lasers via the nonlinear optical Kerr effect. This method allows the generation of pulses of light with a duration as short as a few femtoseconds. The optical Kerr effect is a process which results from the nonlinear response of an optical medium to the electric field of an electromagnetic wave. The refractive index of the medium is dependent on the field strength. Because of the non-uniform power density distribution in a Gaussian beam (as found in laser resonators) the refractive index changes across the beam profile; the refractive index experienced by the beam is greater in the center of the beam than at the edge. Thus a rod of an active Kerr medium functions as a lens for high intensity light. This is called self-focusing and in extreme cases leads to material destruction. In the laser cavity short bursts of light will then be focused differently from continuous waves. To favor the pulsed mode over continuous-wave, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ti-sapphire Laser
Ti:sapphire lasers (also known as Ti:Al2O3 lasers, titanium-sapphire lasers, or Ti:sapphs) are tunable lasers which emit red and near-infrared light in the range from 650 to 1100 nanometers. These lasers are mainly used in scientific research because of their tunability and their ability to generate ultrashort pulses. Lasers based on Ti:sapphire were first constructed and invented in June 1982 by Peter Moulton at the MIT Lincoln Laboratory. Titanium-sapphire refers to the lasing medium, a crystal of sapphire (Al2O3) that is doped with Ti3+ ions. A Ti:sapphire laser is usually pumped with another laser with a wavelength of 514 to 532 nm, for which argon-ion lasers (514.5 nm) and frequency-doubled Nd:YAG, Nd:YLF, and Nd:YVO lasers (527-532 nm) are used. They are capable of laser operation from 670 nm to  nm wavelength. Ti:sapphire lasers operate most efficiently at wavelengths near 800 nm. Types of Ti:sapphire lasers Mode-locked oscillators Mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Anti-reflective Coating
An antireflective, antiglare or anti-reflection (AR) coating is a type of optical coating applied to the surface of lenses, other optical elements, and photovoltaic cells to reduce reflection. In typical imaging systems, this improves the efficiency since less light is lost due to reflection. In complex systems such as cameras, binoculars, telescopes, and microscopes the reduction in reflections also improves the contrast of the image by elimination of stray light. This is especially important in planetary astronomy. In other applications, the primary benefit is the elimination of the reflection itself, such as a coating on eyeglass lenses that makes the eyes of the wearer more visible to others, or a coating to reduce the glint from a covert viewer's binoculars or telescopic sight. Many coatings consist of transparent thin film structures with alternating layers of contrasting refractive index. Layer thicknesses are chosen to produce destructive interference in the beams r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dielectric Mirror
A dielectric mirror, also known as a Bragg mirror, is a type of mirror composed of multiple thin layers of dielectric material, typically deposited on a substrate of glass or some other optical material. By careful choice of the type and thickness of the dielectric layers, one can design an optical coating with specified reflectivity at different wavelengths of light. Dielectric mirrors are also used to produce ultra-high reflectivity mirrors: values of 99.999% or better over a narrow range of wavelengths can be produced using special techniques. Alternatively, they can be made to reflect a broad spectrum of light, such as the entire visible range or the spectrum of the Ti-sapphire laser. Mirrors of this type are very common in optics experiments, due to improved techniques that allow inexpensive manufacture of high-quality mirrors. Examples of their applications include laser cavity end mirrors, hot and cold mirrors, thin-film beamsplitters, high damage threshold mirrors, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fresnel Reflection
The Fresnel equations (or Fresnel coefficients) describe the reflection and transmission of light (or electromagnetic radiation in general) when incident on an interface between different optical media. They were deduced by Augustin-Jean Fresnel () who was the first to understand that light is a transverse wave, even though no one realized that the "vibrations" of the wave were electric and magnetic fields. For the first time, polarization could be understood quantitatively, as Fresnel's equations correctly predicted the differing behaviour of waves of the ''s'' and ''p'' polarizations incident upon a material interface. Overview When light strikes the interface between a medium with refractive index ''n''1 and a second medium with refractive index ''n''2, both reflection and refraction of the light may occur. The Fresnel equations give the ratio of the ''reflected'' wave's electric field to the incident wave's electric field, and the ratio of the ''transmitted'' wave's electri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]