Category Of Functors
   HOME
*





Category Of Functors
In category theory, a branch of mathematics, a functor category D^C is a category where the objects are the functors F: C \to D and the morphisms are natural transformations \eta: F \to G between the functors (here, G: C \to D is another object in the category). Functor categories are of interest for two main reasons: * many commonly occurring categories are (disguised) functor categories, so any statement proved for general functor categories is widely applicable; * every category embeds in a functor category (via the Yoneda embedding); the functor category often has nicer properties than the original category, allowing certain operations that were not available in the original setting. Definition Suppose C is a small category (i.e. the objects and morphisms form a set rather than a proper class) and D is an arbitrary category. The category of functors from C to D, written as Fun(C, D), Funct(C,D), ,D/math>, or D ^C, has as objects the covariant functors from C to D, and a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE