Categorical Trace
   HOME
*





Categorical Trace
In category theory, a branch of mathematics, the categorical trace is a generalization of the trace (linear algebra), trace of a matrix (mathematics), matrix. Definition The trace is defined in the context of a symmetric monoidal category ''C'', i.e., a category (mathematics), category equipped with a suitable notion of a product \otimes. (The notation reflects that the product is, in many cases, a kind of a tensor product.) An object (category theory), object ''X'' in such a category ''C'' is called dualizable object, dualizable if there is another object X^\vee playing the role of a dual object of ''X''. In this situation, the trace of a morphism f: X \to X is defined as the composition of the following morphisms: \mathrm(f) : 1 \ \stackrel\ X \otimes X^\vee \ \stackrel\ X \otimes X^\vee \ \stackrel\ X^\vee \otimes X \ \stackrel\ 1 where 1 is the monoidal unit and the extremal morphisms are the coevaluation and evaluation, which are part of the definition of dualizable objects. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Endomorphism
In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space is a linear map , and an endomorphism of a group is a group homomorphism . In general, we can talk about endomorphisms in any category. In the category of sets, endomorphisms are functions from a set ''S'' to itself. In any category, the composition of any two endomorphisms of is again an endomorphism of . It follows that the set of all endomorphisms of forms a monoid, the full transformation monoid, and denoted (or to emphasize the category ). Automorphisms An invertible endomorphism of is called an automorphism. The set of all automorphisms is a subset of with a group structure, called the automorphism group of and denoted . In the following diagram, the arrows denote implication: Endomorphism rings Any two endomorphisms of an abelian group, , can be added toge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lefschetz Fixed Point Formula
In mathematics, the Lefschetz fixed-point theorem is a formula that counts the fixed points of a continuous mapping from a compact topological space X to itself by means of traces of the induced mappings on the homology groups of X. It is named after Solomon Lefschetz, who first stated it in 1926. The counting is subject to an imputed multiplicity at a fixed point called the fixed-point index. A weak version of the theorem is enough to show that a mapping without ''any'' fixed point must have rather special topological properties (like a rotation of a circle). Formal statement For a formal statement of the theorem, let :f\colon X \rightarrow X\, be a continuous map from a compact triangulable space X to itself. Define the Lefschetz number \Lambda_f of f by :\Lambda_f:=\sum_(-1)^k\mathrm(f_*, H_k(X,\Q)), the alternating (finite) sum of the matrix traces of the linear maps induced by f on H_k(X,\Q), the singular homology groups of X with rational coefficients. A simple versio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Proof
A mathematical proof is an inferential argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical arguments or non-exhaustive inductive reasoning which establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for further mathematical work. Proofs employ logic expressed in mathematical symbols ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler Characteristic
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by \chi ( Greek lower-case letter chi). The Euler characteristic was originally defined for polyhedra and used to prove various theorems about them, including the classification of the Platonic solids. It was stated for Platonic solids in 1537 in an unpublished manuscript by Francesco Maurolico. Leonhard Euler, for whom the concept is named, introduced it for convex polyhedra more generally but failed to rigorously prove that it is an invariant. In modern mathematics, the Euler characteristic arises from homology and, more abstractly, homological algebra. Polyhedra The Euler characteristic \chi was classically defined for the surfaces of polyhedra, acc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Perfect Complex
In algebra, a perfect complex of modules over a commutative ring ''A'' is an object in the derived category of ''A''-modules that is quasi-isomorphic to a bounded complex of finite projective ''A''-modules. A perfect module is a module that is perfect when it is viewed as a complex concentrated at degree zero. For example, if ''A'' is Noetherian, a module over ''A'' is perfect if and only if it is finitely generated and of finite projective dimension. Other characterizations Perfect complexes are precisely the compact objects in the unbounded derived category D(A) of ''A''-modules. They are also precisely the dualizable objects in this category. A compact object in the ∞-category of (say right) module spectra over a ring spectrum is often called perfect;http://www.math.harvard.edu/~lurie/281notes/Lecture19-Rings.pdf see also module spectrum. Pseudo-coherent sheaf When the structure sheaf \mathcal_X is not coherent, working with coherent sheaves has awkwardness (namely the k ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Definition and first examples Definition A ''ring'' is a set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under multiplication, where multiplication distributes over addition; i.e., a \cdot \left(b + c\right) = \left(a \cdot b\right) + \left(a \cdot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Module (mathematics)
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication. Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology. Introduction and definition Motivation In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scalars need only be a ring, so the module conc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chain Complex
In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups (or module (mathematics), modules) and a sequence of group homomorphism, homomorphisms between consecutive groups such that the image (mathematics), image of each homomorphism is included in the kernel (algebra)#Group homomorphisms, kernel of the next. Associated to a chain complex is its Homology (mathematics), homology, which describes how the images are included in the kernels. A cochain complex is similar to a chain complex, except that its homomorphisms are in the opposite direction. The homology of a cochain complex is called its cohomology. In algebraic topology, the singular chain complex of a topological space X is constructed using continuous function#continuous functions between topological spaces, continuous maps from a simplex to X, and the homomorphisms of the chain complex capture how these maps restrict to the boundary of the simplex. The homology of this chain co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]