Categorical Quantum Mechanics
   HOME
*





Categorical Quantum Mechanics
Categorical quantum mechanics is the study of quantum foundations and quantum information using paradigms from mathematics and computer science, notably monoidal category theory. The primitive objects of study are physical processes, and the different ways that these can be composed. It was pioneered in 2004 by Samson Abramsky and Bob Coecke. Categorical quantum mechanics is entry 18M40 in MSC2020. Mathematical setup Mathematically, the basic setup is captured by a dagger symmetric monoidal category: composition of morphisms models sequential composition of processes, and the tensor product describes parallel composition of processes. The role of the dagger is to assign to each state a corresponding test. These can then be adorned with more structure to study various aspects. For instance: * A dagger compact category allows one to distinguish between an "input" and "output" of a process. In the diagrammatic calculus, it allows wires to be bent, allowing for a less restrict ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Foundations
Quantum foundations is a discipline of science that seeks to understand the most counter-intuitive aspects of quantum theory, reformulate it and even propose new generalizations thereof. Contrary to other physical theories, such as general relativity, the defining axioms of quantum theory are quite ad hoc, with no obvious physical intuition. While they lead to the right experimental predictions, they do not come with a mental picture of the world where they fit. There exist different approaches to resolve this conceptual gap: * First, one can put quantum physics in contraposition with classical physics: by identifying scenarios, such as Bell experiments, where quantum theory radically deviates from classical predictions, one hopes to gain physical insights on the structure of quantum physics. * Second, one can attempt to find a re-derivation of the quantum formalism in terms of operational axioms. * Third, one can search for a full correspondence between the mathematical elements ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Completely Positive Map
In mathematics a positive map is a map between C*-algebras that sends positive elements to positive elements. A completely positive map is one which satisfies a stronger, more robust condition. Definition Let A and B be C*-algebras. A linear map \phi: A\to B is called positive map if \phi maps positive elements to positive elements: a\geq 0 \implies \phi(a)\geq 0. Any linear map \phi:A\to B induces another map :\textrm \otimes \phi : \mathbb^ \otimes A \to \mathbb^ \otimes B in a natural way. If \mathbb^\otimes A is identified with the C*-algebra A^ of k\times k-matrices with entries in A, then \textrm\otimes\phi acts as : \begin a_ & \cdots & a_ \\ \vdots & \ddots & \vdots \\ a_ & \cdots & a_ \end \mapsto \begin \phi(a_) & \cdots & \phi(a_) \\ \vdots & \ddots & \vdots \\ \phi(a_) & \cdots & \phi(a_) \end. We say that \phi is k-positive if \textrm_ \otimes \phi is a positive map, and \phi is called completely positive if \phi is k-positive for all k. Properties * Positi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Max Kelly
Gregory Maxwell "Max" Kelly (5 June 1930 – 26 January 2007) was an Australian mathematician who worked on category theory. Biography Kelly was born in Bondi, New South Wales, Australia, on 5 June 1930. He obtained his PhD at Cambridge University in homological algebra in 1957, publishing his first paper in that area in 1959, ''Single-space axioms for homology theory''. He taught in the Pure Mathematics department at the University of Sydney from 1957 to 1966, rising from lecturer to reader. During 1963–1965 he was a visiting fellow at Tulane University and the University of Illinois, where with Samuel Eilenberg he formalized and developed the notion of an enriched category based on intuitions then in the air about making the homsets of a category just as abstract as the objects themselves. He subsequently developed the notion in considerably more detail in his 1982 monograph ''Basic Concepts of Enriched Category Theory''. Let \cal V be a monoidal category, and denote ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Australian Category Theory
Australian(s) may refer to: Australia * Australia, a country * Australians, citizens of the Commonwealth of Australia ** European Australians ** Anglo-Celtic Australians, Australians descended principally from British colonists ** Aboriginal Australians, indigenous peoples of Australia as identified and defined within Australian law * Australia (continent) ** Indigenous Australians * Australian English, the dialect of the English language spoken in Australia * Australian Aboriginal languages * ''The Australian'', a newspaper * Australiana, things of Australian origins Other uses * Australian (horse), a racehorse * Australian, British Columbia, an unincorporated community in Canada See also * The Australian (other) * Australia (other) Australia is a country in the Southern Hemisphere. Australia may also refer to: Places * Name of Australia relates the history of the term, as applied to various places. Oceania *Australia (continent), or Sahul, the landmasses ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ZX-calculus
The ZX-calculus is a rigorous graphical language for reasoning about linear maps between qubits, which are represented as string diagrams called ''ZX-diagrams''. A ZX-diagram consists of a set of generators called ''spiders'' that represent specific tensors. These are connected together to form a tensor network similar to Penrose graphical notation. Due to the symmetries of the spiders and the properties of the underlying category, topologically deforming a ZX-diagram (i.e. moving the generators without changing their connections) does not affect the linear map it represents. In addition to the equalities between ZX-diagrams that are generated by topological deformations, the calculus also has a set of graphical rewrite rules for transforming diagrams into one another. The ZX-calculus is ''universal'' in the sense that any linear map between qubits can be represented as a diagram, and different sets of graphical rewrite rules are complete for different families of linear maps. ZX- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complementarity (physics)
In physics, complementarity is a conceptual aspect of quantum mechanics that Niels Bohr regarded as an essential feature of the theory. The complementarity principle holds that objects have certain pairs of complementary properties which cannot all be observed or measured simultaneously. An example of such a pair is position and momentum. Bohr considered one of the foundational truths of quantum mechanics to be the fact that setting up an experiment to measure one quantity of a pair, for instance the position of an electron, excludes the possibility of measuring the other, yet understanding both experiments is necessary to characterize the object under study. In Bohr's view, the behavior of atomic and subatomic objects cannot be separated from the measuring instruments that create the context in which the measured objects behave. Consequently, there is no "single picture" that unifies the results obtained in these different experimental contexts, and only the "totality of the phenom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superposition Principle
The superposition principle, also known as superposition property, states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. So that if input ''A'' produces response ''X'' and input ''B'' produces response ''Y'' then input (''A'' + ''B'') produces response (''X'' + ''Y''). A function F(x) that satisfies the superposition principle is called a linear function. Superposition can be defined by two simpler properties: additivity F(x_1+x_2)=F(x_1)+F(x_2) \, and homogeneity F(a x)=a F(x) \, for scalar . This principle has many applications in physics and engineering because many physical systems can be modeled as linear systems. For example, a beam can be modeled as a linear system where the input stimulus is the load on the beam and the output response is the deflection of the beam. The importance of linear systems is that they are easier to analyze mathematically; the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Biproduct
In category theory and its applications to mathematics, a biproduct of a finite collection of objects, in a category with zero objects, is both a product and a coproduct. In a preadditive category the notions of product and coproduct coincide for finite collections of objects. The biproduct is a generalization of finite direct sums of modules. Definition Let C be a category with zero morphisms. Given a finite (possibly empty) collection of objects ''A''1, ..., ''A''''n'' in C, their ''biproduct'' is an object A_1 \oplus \dots \oplus A_n in C together with morphisms *p_k \!: A_1 \oplus \dots \oplus A_n \to A_k in C (the ''projection morphisms'') *i_k \!: A_k \to A_1 \oplus \dots \oplus A_n (the ''embedding morphisms'') satisfying *p_k \circ i_k = 1_, the identity morphism of A_k, and *p_l \circ i_k = 0, the zero morphism A_k \to A_l, for k \neq l, and such that *\left( A_1 \oplus \dots \oplus A_n, p_k \right) is a product for the A_k, and *\left( A_1 \oplus \dots \oplus A_n, i_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Classical Information Channel
{{Short description, Type of communication channel in quantum information science In quantum information science, a classical information channel (often called simply classical channel) is a communication channel that can be used to transmit classical information (as opposed to quantum channel which can transmit quantum information). An example would be a light travelling over fiber optics lines or electricity travelling over phone lines. Although classical channels cannot transmit quantum information by themselves, they can be useful in combination with quantum channels. Examples of their use are: * In quantum teleportation, a classical channel together with a previously prepared entangled quantum state are used to transmit quantum information between two parties. Neither the classical channel nor the previously prepared quantum state alone can do this task. * In quantum cryptography, a classical channel is used along with a quantum channel in protocols for quantum key exchange. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Frobenius Algebra
In mathematics, especially in the fields of representation theory and module theory, a Frobenius algebra is a finite-dimensional unital associative algebra with a special kind of bilinear form which gives the algebras particularly nice duality theories. Frobenius algebras began to be studied in the 1930s by Richard Brauer and Cecil Nesbitt and were named after Georg Frobenius. Tadashi Nakayama discovered the beginnings of a rich duality theory , . Jean Dieudonné used this to characterize Frobenius algebras . Frobenius algebras were generalized to quasi-Frobenius rings, those Noetherian rings whose right regular representation is injective. In recent times, interest has been renewed in Frobenius algebras due to connections to topological quantum field theory. Definition A finite-dimensional, unital, associative algebra ''A'' defined over a field ''k'' is said to be a Frobenius algebra if ''A'' is equipped with a nondegenerate bilinear form that satisfies the following ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


No-deleting Theorem
In physics, the no-deleting theorem of quantum information theory is a no-go theorem which states that, in general, given two copies of some arbitrary quantum state, it is impossible to delete one of the copies. It is a time-reversed dual to the no-cloning theorem, which states that arbitrary states cannot be copied. This theorem seems remarkable, because, in many senses, quantum states are fragile; the theorem asserts that, in a particular case, they are also robust. Physicist Arun K. Pati along with Samuel L. Braunstein proved this theorem. The no-deleting theorem, together with the no-cloning theorem, underpin the interpretation of quantum mechanics in terms of category theory, and, in particular, as a dagger symmetric monoidal category. This formulation, known as categorical quantum mechanics, in turn allows a connection to be made from quantum mechanics to linear logic as the logic of quantum information theory (in exact analogy to classical logic being founded on Cartesian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]