Cage (graph Theory)
   HOME
*





Cage (graph Theory)
In the mathematical area of graph theory, a cage is a regular graph that has as few vertices as possible for its girth. Formally, an is defined to be a graph in which each vertex has exactly neighbors, and in which the shortest cycle has length exactly . An is an with the smallest possible number of vertices, among all . A is often called a . It is known that an exists for any combination of and . It follows that all exist. If a Moore graph exists with degree and girth , it must be a cage. Moreover, the bounds on the sizes of Moore graphs generalize to cages: any cage with odd girth must have at least :1+r\sum_^(r-1)^i vertices, and any cage with even girth must have at least :2\sum_^(r-1)^i vertices. Any with exactly this many vertices is by definition a Moore graph and therefore automatically a cage. There may exist multiple cages for a given combination of and . For instance there are three nonisomorphic , each with 70 vertices: the Balaban 10-cage, the Ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tutte Eight Cage
William Thomas Tutte Order of Canada, OC Royal Society, FRS Royal Society of Canada, FRSC (; 14 May 1917 – 2 May 2002) was an English and Canadian cryptanalysis, codebreaker and mathematician. During the Second World War, he made a brilliant and fundamental advance in cryptanalysis of the Lorenz cipher, a major Nazi Germany, Nazi German cipher system which was used for top-secret communications within the Wehrmacht High Command. The high-level, strategic nature of the intelligence obtained from Tutte's crucial breakthrough, in the bulk decrypting of Lorenz-enciphered messages specifically, contributed greatly, and perhaps even decisively, to the defeat of Nazi Germany. He also had a number of significant mathematical accomplishments, including foundation work in the fields of graph theory and matroid theory. Tutte's research in the field of graph theory proved to be of remarkable importance. At a time when graph theory was still a primitive subject, Tutte commenced the study of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


McGee Graph
In the mathematical field of graph theory, the McGee graph or the (3-7)-cage is a 3-regular graph with 24 vertices and 36 edges. The McGee graph is the unique (3,7)-cage (the smallest cubic graph of girth 7). It is also the smallest cubic cage that is not a Moore graph. First discovered by Sachs but unpublished, the graph is named after McGee who published the result in 1960. Then, the McGee graph was proven the unique (3,7)-cage by Tutte in 1966. The McGee graph requires at least eight crossings in any drawing of it in the plane. It is one of three non-isomorphic graphs tied for being the smallest cubic graph that requires eight crossings. Another of these three graphs is the generalized Petersen graph , also known as the Nauru graph. The McGee graph has radius 4, diameter 4, chromatic number 3 and chromatic index 3. It is also a 3- vertex-connected and a 3- edge-connected graph. It has book thickness 3 and queue number 2. Algebraic properties The characteristic polynomial of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorica
''Combinatorica'' is an international journal of mathematics, publishing papers in the fields of combinatorics and computer science. It started in 1981, with László Babai and László Lovász as the editors-in-chief with Paul Erdős as honorary editor-in-chief. The current editors-in-chief are Imre Bárány and József Solymosi. The advisory board consists of Ronald Graham, Gyula O. H. Katona, Miklós Simonovits, Vera Sós, and Endre Szemerédi. It is published by the János Bolyai Mathematical Society and Springer Verlag. The following members of the ''Hungarian School of Combinatorics'' have strongly contributed to the journal as authors, or have served as editors: Miklós Ajtai, László Babai, József Beck, András Frank, Péter Frankl, Zoltán Füredi, András Hajnal, Gyula Katona, László Lovász, László Pyber, Alexander Schrijver, Miklós Simonovits, Vera Sós, Endre Szemerédi, Tamás Szőnyi, Éva Tardos, Gábor Tardos.{{cite web, url=https://www.sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bulletin Of The American Mathematical Society
The ''Bulletin of the American Mathematical Society'' is a quarterly mathematical journal published by the American Mathematical Society. Scope It publishes surveys on contemporary research topics, written at a level accessible to non-experts. It also publishes, by invitation only, book reviews and short ''Mathematical Perspectives'' articles. History It began as the ''Bulletin of the New York Mathematical Society'' and underwent a name change when the society became national. The Bulletin's function has changed over the years; its original function was to serve as a research journal for its members. Indexing The Bulletin is indexed in Mathematical Reviews, Science Citation Index, ISI Alerting Services, CompuMath Citation Index, and Current Contents ''Current Contents'' is a rapid alerting service database from Clarivate Analytics, formerly the Institute for Scientific Information and Thomson Reuters. It is published online and in several different printed subject sectio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by King Henry VIII in 1534, it is the oldest university press in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also publishes Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Electronic Journal Of Combinatorics
The ''Electronic Journal of Combinatorics'' is a peer-reviewed open access scientific journal covering research in combinatorial mathematics. The journal was established in 1994 by Herbert Wilf (University of Pennsylvania) and Neil Calkin ( Georgia Institute of Technology). The Electronic Journal of Combinatorics is a founding member of the Free Journal Network. According to the ''Journal Citation Reports'', the journal had a 2017 impact factor of 0.762. Editors-in-chief Current The current editors-in-chief are: * Maria Axenovich, Karlsruhe Institute of Technology, Germany * Miklós Bóna, University of Florida, United States * Julia Böttcher, London School of Economics, United Kingdom * Richard A. Brualdi, University of Wisconsin, Madison, United States * Eric Fusy, CNRS/LIX, École Polytechnique, France * Catherine Greenhill, UNSW Sydney, Australia * Brendan McKay, Australian National University, Australia * Bojan Mohar, Simon Fraser University, Canada * Marc Noy, Univ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Graph Theory
The ''Journal of Graph Theory'' is a peer-reviewed mathematics journal specializing in graph theory and related areas, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. It is published by John Wiley & Sons. The journal was established in 1977 by Frank Harary.Frank Harary
a biographical sketch at the ACM site
The are
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ramanujan Graph
In the mathematical field of spectral graph theory, a Ramanujan graph is a regular graph whose spectral gap is almost as large as possible (see extremal graph theory). Such graphs are excellent spectral expanders. AMurty's survey papernotes, Ramanujan graphs "fuse diverse branches of pure mathematics, namely, number theory, representation theory, and algebraic geometry". These graphs are indirectly named after Srinivasa Ramanujan; their name comes from the Ramanujan–Petersson conjecture, which was used in a construction of some of these graphs. Definition Let G be a connected d-regular graph with n vertices, and let \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n be the eigenvalues of the adjacency matrix of G (or the spectrum of G). Because G is connected and d-regular, its eigenvalues satisfy d = \lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq -d . Define \lambda(G) = \max_, \lambda_i, = \max(, \lambda_2, , , \lambda_n, ). A connected d-regular graph G is a ''Ram ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logarithm
In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 of is , or . The logarithm of to ''base''  is denoted as , or without parentheses, , or even without the explicit base, , when no confusion is possible, or when the base does not matter such as in big O notation. The logarithm base is called the decimal or common logarithm and is commonly used in science and engineering. The natural logarithm has the number e (mathematical constant), as its base; its use is widespread in mathematics and physics, because of its very simple derivative. The binary logarithm uses base and is frequently used in computer science. Logarithms were introduced by John Napier in 1614 as a means of simplifying calculations. They were rapidly adopted by navigators, scientists, engineers, surveyors and oth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponential Growth
Exponential growth is a process that increases quantity over time. It occurs when the instantaneous rate of change (that is, the derivative) of a quantity with respect to time is proportional to the quantity itself. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). If the constant of proportionality is negative, then the quantity decreases over time, and is said to be undergoing exponential decay instead. In the case of a discrete domain of definition with equal intervals, it is also called geometric growth or geometric decay since the function values form a geometric progression. The formula for exponential growth of a variable at the growth rate , as time goes on in discrete intervals (that is, at integer times 0, 1, 2, 3, ...), is x_t = x_0(1+r)^t where is the value of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generalized Polygon
In mathematics, a generalized polygon is an incidence structure introduced by Jacques Tits in 1959. Generalized ''n''-gons encompass as special cases projective planes (generalized triangles, ''n'' = 3) and generalized quadrangles (''n'' = 4). Many generalized polygons arise from groups of Lie type, but there are also exotic ones that cannot be obtained in this way. Generalized polygons satisfying a technical condition known as the '' Moufang property'' have been completely classified by Tits and Weiss. Every generalized ''n''-gon with ''n'' even is also a near polygon. Definition A generalized ''2''-gon (or a digon) is an incidence structure with at least 2 points and 2 lines where each point is incident to each line. For ''n \geq 3'' a generalized ''n''-gon is an incidence structure (P,L,I), where P is the set of points, L is the set of lines and I\subseteq P\times L is the incidence relation, such that: * It is a partial linear space. * It has no ordinary ''m''-gons as subge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Plane
In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus ''any'' two distinct lines in a projective plane intersect at exactly one point. Renaissance artists, in developing the techniques of drawing in perspective, laid the groundwork for this mathematical topic. The archetypical example is the real projective plane, also known as the extended Euclidean plane. This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by , RP2, or P2(R), among other notations. There are many other projective planes, both infinite, such as the complex projective plan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]