Cycloolefin
   HOME
*



picture info

Cycloolefin
A cycloalkene or cycloolefin is a type of alkene hydrocarbon which contains a closed ring of carbon atoms and either one or more double bonds, but has no aromatic character. Some cycloalkenes, such as cyclobutene and cyclopentene, can be used as monomers to produce polymer chains. Due to geometrical considerations, smaller cycloalkenes are almost always the ''cis'' isomers, and the term ''cis'' tends to be omitted from the names. Cycloalkenes require considerable p-orbital overlap in the form of a bridge between the carbon-carbon double bond, however, this is not feasible in smaller molecules due to the increase of strain that could break the molecule apart. In greater carbon number cycloalkenes, the addition of CH2 substituents decreases strain. trans-Cycloalkenes with 7 or fewer carbons in the ring will not occur under normal conditions because of the large amount of ring strain needed. In larger rings (8 or more atoms), ''cis''–''trans'' isomerism of the double bond may occur. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alkene
In organic chemistry, an alkene is a hydrocarbon containing a carbon–carbon double bond. Alkene is often used as synonym of olefin, that is, any hydrocarbon containing one or more double bonds.H. Stephen Stoker (2015): General, Organic, and Biological Chemistry'. 1232 pages. Two general types of monoalkenes are distinguished: terminal and internal. Also called α-olefins, terminal alkenes are more useful. However, the International Union of Pure and Applied Chemistry (IUPAC) recommends using the name "alkene" only for acyclic hydrocarbons with just one double bond; alkadiene, alkatriene, etc., or polyene for acyclic hydrocarbons with two or more double bonds; cycloalkene, cycloalkadiene, etc. for cyclic ones; and "olefin" for the general class – cyclic or acyclic, with one or more double bonds. Acyclic alkenes, with only one double bond and no other functional groups (also known as mono-enes) form a homologous series of hydrocarbons with the general formula with '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




1,3-Cyclohexadiene
Cyclohexa-1,3-diene is an organic compound with the formula (C2H4)(CH)4. It is a colorless, flammable liquid. Its refractive index is 1.475 (20 °C, D). A naturally occurring derivative of 1,3-cyclohexadiene is terpinene, a component of pine oil. Synthesis Cyclohexadiene is prepared by the dehydrobromination of 1,2-dibromocyclohexane: :(CH2)4(CHBr)2 + 2 NaH → (CH2)2(CH)4 + 2 NaBr + 2 H2 Reactions Useful reactions of this diene are cycloadditions, such as the Diels-Alder reaction. Conversion of cyclohexa-1,3-diene to benzene + hydrogen is exothermic by about 25 kJ/mol in the gas phase. :cyclohexane → cyclohexa-1,3-diene + 2 H2 (Δ''H'' = +231.5 kJ/mol; endothermic) :cyclohexane → benzene + 3 H2 (Δ''H'' = +205 kJ/mol; endothermic) :cyclohexa-1,3-diene → benzene + H2 (Δ''H'' = -26.5 kJ/mol; exothermic) Compared with its isomer cyclohexa-1,4-diene, cyclohexa-1,3-diene is about 1.6 kJ/mol more stable. Cyclohexadiene and its derivatives form metal-alkene complexes. Ill ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electrocyclic Reaction (intro)1
In organic chemistry, an electrocyclic reaction is a type of pericyclic rearrangement where the net result is one pi bond being converted into one sigma bond or vice versa. These reactions are usually categorized by the following criteria: * Reactions can be either photochemical or thermal. * Reactions can be either ring-opening or ring-closing (electrocyclization). * Depending on the type of reaction (photochemical or thermal) and the number of pi electrons, the reaction can happen through either a conrotatory or disrotatory mechanism. * The type of rotation determines whether the cis or trans isomer of the product will be formed. Classical examples The Nazarov cyclization reaction is a named electrocyclic reaction converting divinylketones to cyclopentenones. A classic example is the thermal ring-opening reaction of 3,4-dimethylcyclobutene. The cis isomer exclusively yields whereas the trans isomer gives the trans,trans diene: This reaction course can be explained in a sim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GPP Cyclization To Elisabethatriene
GPP may refer to: Places * Grosse Pointe Park, Michigan, United States Politics * Gambian People's Party, Gambia * German People's Party, a political party in Germany dissolved in 1933 * German People's Party (1868), a political party in Germany from 1868 to 1910 * German People's Party (Austria), a former political party in Austria * German People's Party (Romania), a former political party in Romania * Great Patriotic Pole, a Venezuelan political alliance * Goa Praja Party, Goa, India * Gujarat Parivartan Party, Gujarat, India Science and technology Biology and medicine * General physical preparedness * Generalized pustular psoriasis * Gross Primary Productivity * Gpp protein, which converts pppGpp to ppGpp during the stringent response Chemistry * Geranyl pyrophosphate Computing and telecommunications * 3GPP, a collaboration between telecommunications associations * GeForce Partner Program * General purpose preprocessor * Genuine People Personalities (Douglas Adam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diels Alder Reaction
Diels is the last name of several people: * Rudolf Diels (1900–1957), German politician * Otto Diels (1876–1954), German scientist noted for his work on the Diels–Alder reaction * Ludwig Diels (1874–1945), German botanist * Hermann Diels Hermann Alexander Diels (; 18 May 1848 – 4 June 1922) was a German classical scholar, who was influential in the area of early Greek philosophy and is known for his standard work ''Die Fragmente der Vorsokratiker''. Diels helped to import the ...
(1848–1922), German classical scholar {{surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Birch Reduction Benzoate
A birch is a thin-leaved deciduous hardwood tree of the genus ''Betula'' (), in the family Betulaceae, which also includes alders, hazels, and hornbeams. It is closely related to the beech-oak family Fagaceae. The genus ''Betula'' contains 30 to 60 known taxa of which 11 are on the IUCN 2011 Red List of Threatened Species. They are a typically rather short-lived pioneer species widespread in the Northern Hemisphere, particularly in northern areas of temperate climates and in boreal climates. Description Birch species are generally small to medium-sized trees or shrubs, mostly of northern temperate and boreal climates. The simple leaves are alternate, singly or doubly serrate, feather-veined, petiolate and stipulate. They often appear in pairs, but these pairs are really borne on spur-like, two-leaved, lateral branchlets. The fruit is a small samara, although the wings may be obscure in some species. They differ from the alders (''Alnus'', another genus in the family) in that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pyramidal Alkene
Pyramidal alkenes are alkenes in which the two carbon atoms making up the double bond are not coplanar with their four substituents. This deformation results from geometric constraints. Pyramidal alkenes only are of interest because much can be learned from them about the nature of chemical bonding. Energetics Twisting to a 90° dihedral angle between two of the groups on the carbons requires less energy than the strength of a pi bond, and the bond still holds. The carbons of the double bond become pyramidal, which allows preserving some p orbital alignment—and hence pi bonding. The other two attached groups remain at a larger dihedral angle. This contradicts a common textbook assertion that the two carbons retain their planar nature when twisting, in which case the p orbitals would rotate enough away from each other to be unable to sustain a pi bond. In a 90°-twisted alkene, the p orbitals are only misaligned by 42° and the strain energy is only around 40 kcal/mol. In contrast, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alkene
In organic chemistry, an alkene is a hydrocarbon containing a carbon–carbon double bond. Alkene is often used as synonym of olefin, that is, any hydrocarbon containing one or more double bonds.H. Stephen Stoker (2015): General, Organic, and Biological Chemistry'. 1232 pages. Two general types of monoalkenes are distinguished: terminal and internal. Also called α-olefins, terminal alkenes are more useful. However, the International Union of Pure and Applied Chemistry (IUPAC) recommends using the name "alkene" only for acyclic hydrocarbons with just one double bond; alkadiene, alkatriene, etc., or polyene for acyclic hydrocarbons with two or more double bonds; cycloalkene, cycloalkadiene, etc. for cyclic ones; and "olefin" for the general class – cyclic or acyclic, with one or more double bonds. Acyclic alkenes, with only one double bond and no other functional groups (also known as mono-enes) form a homologous series of hydrocarbons with the general formula with '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nomenclature Of Organic Chemistry
''Nomenclature of Organic Chemistry'', commonly referred to by chemists as the ''Blue Book'', is a collection of recommendations on organic chemical nomenclature published at irregular intervals by the International Union of Pure and Applied Chemistry (IUPAC). A full edition was published in 1979, an abridged and updated version of which was published in 1993 as ''A Guide to IUPAC Nomenclature of Organic Compounds''. Both of these are now out-of-print in their paper versions, but are available free of charge in electronic versions. After the release of a draft version for public comment in 2004 and the publication of several revised sections in the journal ''Pure and Applied Chemistry'', a fully revised version was published in print in 2013. See also *''Nomenclature of Inorganic Chemistry'' (the ''Red Book'') *''Quantities, Units and Symbols in Physical Chemistry'' (the ''Green Book'') *''Compendium of Chemical Terminology'' (the ''Gold Book'') *''Compendium of Analytical No ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trans-Cyclooctene
''trans''-Cyclooctene is a cyclic hydrocarbon with the formula €“(CH2)6CH=CH– where the two C–C single bonds adjacent to the double bond are on opposite sides of the latter's plane. It is a colorless liquid with a disagreeable odor. Cyclooctene is notable as the smallest cycloalkene that is readily isolated as its ''trans''-isomer. The ''cis''-isomer is much more stable; the ring-strain energies being 16.7 and 7.4 kcal/mol, respectively.Ron Walker, Rosemary M. Conrad, and Robert H. Grubbs (2009): "The living ROMP of ''trans''-cyclooctene". ''Macromolecules'', volume 42, issue 3, pages 599–605. A planar arrangement of the ring carbons would be too strained, and therefore the stable conformations of the ''trans'' form have a bent (non-planar) ring. Computations indicate that the most stable "crown" conformation has the carbon atoms alternately above and below the plane of the ring. A "half-chair" conformation, with about 6 kcal/mol higher energy, has carbons 2,3,5,6, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]