Cyclohedron
In geometry, the cyclohedron is a d-dimensional polytope where d can be any non-negative integer. It was first introduced as a combinatorial object by Raoul Bott and Clifford Taubes and, for this reason, it is also sometimes called the Bott–Taubes polytope. It was later constructed as a polytope by Martin Markl and by Rodica Simion. Rodica Simion describes this polytope as an associahedron of type B. The cyclohedron is useful in studying knot invariants. Construction Cyclohedra belong to several larger families of polytopes, each providing a general construction. For instance, the cyclohedron belongs to the generalized associahedra that arise from cluster algebra, and to the graph-associahedra, a family of polytopes each corresponding to a graph. In the latter family, the graph corresponding to the d-dimensional cyclohedron is a cycle on d+1 vertices. In topological terms, the configuration space of d+1 distinct points on the circle S^1 is a (d+1)-dimensional manifold, which ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cyclohedron W3
In geometry, the cyclohedron is a d-dimensional polytope where d can be any non-negative integer. It was first introduced as a combinatorial object by Raoul Bott and Clifford Taubes and, for this reason, it is also sometimes called the Bott–Taubes polytope. It was later constructed as a polytope by Martin Markl and by Rodica Simion. Rodica Simion describes this polytope as an associahedron of type B. The cyclohedron is useful in studying knot invariants. Construction Cyclohedra belong to several larger families of polytopes, each providing a general construction. For instance, the cyclohedron belongs to the generalized associahedra that arise from cluster algebra, and to the graph-associahedra, a family of polytopes each corresponding to a graph. In the latter family, the graph corresponding to the d-dimensional cyclohedron is a cycle on d+1 vertices. In topological terms, the configuration space of d+1 distinct points on the circle S^1 is a (d+1)-dimensional manifold, which c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Associahedron
In mathematics, an associahedron is an -dimensional convex polytope in which each vertex corresponds to a way of correctly inserting opening and closing parentheses in a string of letters, and the edges correspond to single application of the associativity rule. Equivalently, the vertices of an associahedron correspond to the triangulations of a regular polygon with sides and the edges correspond to edge flips in which a single diagonal is removed from a triangulation and replaced by a different diagonal. Associahedra are also called Stasheff polytopes after the work of Jim Stasheff, who rediscovered them in the early 1960s after earlier work on them by Dov Tamari. Examples The one-dimensional associahedron ''K''3 represents the two parenthesizations ((''xy'')''z'') and (''x''(''yz'')) of three symbols, or the two triangulations of a square. It is itself a line segment. The two-dimensional associahedron ''K''4 represents the five parenthesizations of four symbols, or th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Associahedron
In mathematics, an associahedron is an -dimensional convex polytope in which each vertex corresponds to a way of correctly inserting opening and closing parentheses in a string of letters, and the edges correspond to single application of the associativity rule. Equivalently, the vertices of an associahedron correspond to the triangulations of a regular polygon with sides and the edges correspond to edge flips in which a single diagonal is removed from a triangulation and replaced by a different diagonal. Associahedra are also called Stasheff polytopes after the work of Jim Stasheff, who rediscovered them in the early 1960s after earlier work on them by Dov Tamari. Examples The one-dimensional associahedron ''K''3 represents the two parenthesizations ((''xy'')''z'') and (''x''(''yz'')) of three symbols, or the two triangulations of a square. It is itself a line segment. The two-dimensional associahedron ''K''4 represents the five parenthesizations of four symbols, or th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Flip Graph
In mathematics, a flip graph is a graph whose vertices are combinatorial or geometric objects, and whose edges link two of these objects when they can be obtained from one another by an elementary operation called a flip. Flip graphs are special cases of geometric graphs. Among noticeable flip graphs, one finds the 1-skeleton of polytopes such as associahedra or cyclohedra. Examples A prototypical flip graph is that of a convex n-gon \pi. The vertices of this graph are the triangulations of \pi, and two triangulations are adjacent in it whenever they differ by a single interior edge. In this case, the flip operation consists in exchanging the diagonals of a convex quadrilateral. These diagonals are the interior edges by which two triangulations adjacent in the flip graph differ. The resulting flip graph is both the Hasse diagram of the Tamari lattice and the 1-skeleton of the (n-3)-dimensional associahedron. This basic construction can be generalized in a number of wa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Manifold With Corners
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of n-dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. The concept has applications in computer-graphics given the need to associate pictures with coordinates (e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Algebraic Combinatorics
''Journal of Algebraic Combinatorics'' is a peer-reviewed scientific journal covering algebraic combinatorics. It was established in 1992 and is published by Springer Science+Business Media. The editor-in-chief is Ilias S. Kotsireas (Wilfrid Laurier University). In 2017, the journal's four editors-in-chief and editorial board resigned to protest the publisher's high prices and limited accessibility. They criticized Springer for "double-dipping", that is, charging large subscription fees to libraries in addition to high fees for authors who wished to make their publications open access. The board subsequently started their own open access journal, ''Algebraic Combinatorics''. Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Permutoassociahedron
In mathematics, the permutoassociahedron is an n-dimensional polytope whose vertices correspond to the bracketings of the permutations of n+1 terms and whose edges connect two bracketings that can be obtained from one another either by moving a pair of brackets using associativity or by transposing two consecutive terms that are not separated by a bracket. The permutoassociahedron was first defined as a CW complex by Mikhail Kapranov who noted that this structure appears implicitly in Mac Lane's coherence theorem for symmetric and braided categories as well as in Vladimir Drinfeld's work on the Knizhnik–Zamolodchikov equations. It was constructed as a convex polytope by Victor Reiner and Günter M. Ziegler. Examples When n = 2, the vertices of the permutoassociahedron can be represented by bracketing all the permutations of three terms a, b, and c. There are six such permutations, abc, acb, bac, bca, cab, and cba, and each of them admits two bracketings (obtained from one ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Permutohedron
In mathematics, the permutohedron of order ''n'' is an (''n'' − 1)-dimensional polytope embedded in an ''n''-dimensional space. Its vertex coordinates (labels) are the permutations of the first ''n'' natural numbers. The edges identify the shortest possible paths (sets of transpositions) that connect two vertices (permutations). Two permutations connected by an edge differ in only two places (one transposition), and the numbers on these places are neighbors (differ in value by 1). The image on the right shows the permutohedron of order 4, which is the truncated octahedron. Its vertices are the 24 permutations of (1, 2, 3, 4). Parallel edges have the same edge color. The 6 edge colors correspond to the 6 possible transpositions of 4 elements, i.e. they indicate in which two places the connected permutations differ. (E.g. red edges connect permutations that differ in the last two places.) History According to , permutohedra were first studied by . The name ''permut ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Israel Journal Of Mathematics
'' Israel Journal of Mathematics'' is a peer-reviewed mathematics journal published by the Hebrew University of Jerusalem (Magnes Press). Founded in 1963, as a continuation of the ''Bulletin of the Research Council of Israel'' (Section F), the journal publishes articles on all areas of mathematics. The journal is indexed by ''Mathematical Reviews'' and Zentralblatt MATH. Its 2009 MCQ was 0.70, and its 2009 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... was 0.754. External links * Mathematics journals Publications established in 1963 English-language journals Bimonthly journals Hebrew University of Jerusalem {{math-journal-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convex Polygon
In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon (not self-intersecting). Equivalently, a polygon is convex if every line that does not contain any edge intersects the polygon in at most two points. A strictly convex polygon is a convex polygon such that no line contains two of its edges. In a convex polygon, all interior angles are less than or equal to 180 degrees, while in a strictly convex polygon all interior angles are strictly less than 180 degrees. Properties The following properties of a simple polygon are all equivalent to convexity: *Every internal angle is strictly less than 180 degrees. *Every point on every line segment between two points inside or on the boundary of the polygon remains inside or on the boundary. *The polygon is entirely contained in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polygon Triangulation
In computational geometry, polygon triangulation is the partition of a polygonal area (simple polygon) into a set of triangles, i.e., finding a set of triangles with pairwise non-intersecting interiors whose union is . Triangulations may be viewed as special cases of planar straight-line graphs. When there are no holes or added points, triangulations form maximal outerplanar graphs. Polygon triangulation without extra vertices Over time, a number of algorithms have been proposed to triangulate a polygon. Special cases It is trivial to triangulate any convex polygon in linear time into a fan triangulation, by adding diagonals from one vertex to all other non-nearest neighbor vertices. The total number of ways to triangulate a convex ''n''-gon by non-intersecting diagonals is the (''n''−2)nd Catalan number, which equals :\frac, a formula found by Leonhard Euler. A monotone polygon can be triangulated in linear time with either the algorithm of A. Fournier and D.Y. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
International Mathematics Research Notices
The ''International Mathematics Research Notices'' is a peer-reviewed mathematics journal. Originally published by Duke University Press and Hindawi Publishing Corporation, it is now published by Oxford University Press. retrieved 2015-02-26. The Executive Editor is Zeev Rudnick (). According to the '' Journal Citation Re ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |