HOME
*





Control Function (econometrics)
Control functions (also known as two-stage residual inclusion) are statistical methods to correct for endogeneity problems by modelling the endogeneity in the error term. The approach thereby differs in important ways from other models that try to account for the same econometric problem. Instrumental variables, for example, attempt to model the endogenous variable ''X'' as an often invertible model with respect to a relevant and exogenous instrument ''Z''. Panel analysis uses special data properties to difference out unobserved heterogeneity that is assumed to be fixed over time. Control functions were introduced by Heckman and Robb although the principle can be traced back to earlier papers. A particular reason why they are popular is because they work for non-invertible models (such as discrete choice models) and allow for heterogeneous effects, where effects at the individual level can differ from effects at the aggregate. A well-known example of the control function appr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Endogeneity (econometrics)
In econometrics, endogeneity broadly refers to situations in which an explanatory variable is correlated with the error term. The distinction between endogenous and exogenous variables originated in simultaneous equations models, where one separates variables whose values are determined by the model from variables which are predetermined; ignoring simultaneity in the estimation leads to biased estimates as it violates the exogeneity assumption of the Gauss–Markov theorem. The problem of endogeneity is often ignored by researchers conducting non-experimental research and doing so precludes making policy recommendations. Instrumental variable techniques are commonly used to address this problem. Besides simultaneity, correlation between explanatory variables and the error term can arise when an unobserved or omitted variable is confounding both independent and dependent variables, or when independent variables are measured with error. Exogeneity versus endogeneity In a sto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generated Regressor
In least squares estimation problems, sometimes one or more regressors specified in the model are not observable. One way to circumvent this issue is to estimate or generate regressors from observable data. This generated regressor method is also applicable to unobserved instrumental variables. Under some regularity conditions, consistency and asymptotic normality of least squares estimator is preserved, but asymptotic variance has a different form in general. Suppose the model of interest is the following: :y_=g(x_,x_,\beta)+u_ where g is a conditional mean function and its form is known up to finite-dimensional parameter β. Here x_ is not observable, but we know that x_=h(w_,\gamma) for some function ''h'' known up to parameter \gamma, and a random sample y_=g(x_,x_,\beta)+u_ is available. Suppose we have a consistent estimator \hat\gamma of \gamma that uses the observation w_'s. Then, β can be estimated by (Non-Linear) Least Squares using \hat=h(w_,\hat\gamma). Some exam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Machine Learning Research
The ''Journal of Machine Learning Research'' is a peer-reviewed open access scientific journal covering machine learning. It was established in 2000 and the first editor-in-chief was Leslie Kaelbling. The current editors-in-chief are Francis Bach (Inria) and David Blei (Columbia University). History The journal was established as an open-access alternative to the journal ''Machine Learning''. In 2001, forty editorial board members of ''Machine Learning'' resigned, saying that in the era of the Internet, it was detrimental for researchers to continue publishing their papers in expensive journals with pay-access archives. The open access model employed by the ''Journal of Machine Learning Research'' allows authors to publish articles for free and retain copyright, while archives are freely available online. Print editions of the journal were published by MIT Press until 2004 and by Microtome Publishing thereafter. From its inception, the journal received no revenue from the pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Two-stage Least Squares
In statistics, econometrics, epidemiology and related disciplines, the method of instrumental variables (IV) is used to estimate causal relationships when controlled experiments are not feasible or when a treatment is not successfully delivered to every unit in a randomized experiment. Intuitively, IVs are used when an explanatory variable of interest is correlated with the error term, in which case ordinary least squares and ANOVA give biased results. A valid instrument induces changes in the explanatory variable but has no independent effect on the dependent variable, allowing a researcher to uncover the causal effect of the explanatory variable on the dependent variable. Instrumental variable methods allow for consistent estimation when the explanatory variables (covariates) are correlated with the error terms in a regression model. Such correlation may occur when: # changes in the dependent variable change the value of at least one of the covariates ("reverse" causation), # ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Econometrica
''Econometrica'' is a peer-reviewed academic journal of economics, publishing articles in many areas of economics, especially econometrics. It is published by Wiley-Blackwell on behalf of the Econometric Society. The current editor-in-chief is Guido Imbens. History ''Econometrica'' was established in 1933. Its first editor was Ragnar Frisch, recipient of the first Nobel Memorial Prize in Economic Sciences in 1969, who served as an editor from 1933 to 1954. Although ''Econometrica'' is currently published entirely in English, the first few issues also contained scientific articles written in French. Indexing and abstracting ''Econometrica'' is abstracted and indexed in: * Scopus * EconLit * Social Science Citation Index According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 5.844, ranking it 22/557 in the category "Economics". Awards issued The Econometric Society aims to attract high-quality applied work in economics for publication in ''Eco ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Distributional Assumption
Statistics, like all mathematical disciplines, does not infer valid conclusions from nothing. Inferring interesting conclusions about real statistical populations almost always requires some background assumptions. Those assumptions must be made carefully, because incorrect assumptions can generate wildly inaccurate conclusions. Here are some examples of statistical assumptions: * Independence of observations from each other (this assumption is an especially common error). *Independence of observational error from potential confounding effects. *Exact or approximate normality of observations (or errors). *Linearity of graded responses to quantitative stimuli, e.g., in linear regression. Classes of assumptions There are two approaches to statistical inference: ''model-based inference'' and ''design-based inference''. Both approaches rely on some statistical model to represent the data-generating process. In the model-based approach, the model is taken to be initially unknown, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinary Least Squares
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values of the variable being observed) in the input dataset and the output of the (linear) function of the independent variable. Geometrically, this is seen as the sum of the squared distances, parallel to the axis of the dependent variable, between each data point in the set and the corresponding point on the regression surface—the smaller the differences, the better the model fits the data. The resulting estimator can be expressed by a simple formula, especially in the case of a simple linear regression, in which there is a single regressor on the right side of the regression equation. The OLS estimator is consiste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quasi-maximum Likelihood Estimation
In statistics a quasi-maximum likelihood estimate (QMLE), also known as a pseudo-likelihood estimate or a composite likelihood estimate, is an estimate of a parameter ''θ'' in a statistical model that is formed by maximizing a function that is related to the logarithm of the likelihood function, but in discussing the consistency and (asymptotic) variance-covariance matrix, we assume some parts of the distribution may be mis-specified. In contrast, the maximum likelihood estimate maximizes the actual log likelihood function for the data and model. The function that is maximized to form a QMLE is often a simplified form of the actual log likelihood function. A common way to form such a simplified function is to use the log-likelihood function of a misspecified model that treats certain data values as being independent, even when in actuality they may not be. This removes any parameters from the model that are used to characterize these dependencies. Doing this only makes sense ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poisson Regression
In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. Poisson regression assumes the response variable ''Y'' has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables. Negative binomial regression is a popular generalization of Poisson regression because it loosens the highly restrictive assumption that the variance is equal to the mean made by the Poisson model. The traditional negative binomial regression model is based on the Poisson-gamma mixture distribution. This model is popular because it models the Poisson heterogeneity with a gamma distribution. Poisson regression models are generalized linear models with the logarithm as the (canonical) link function, and the Poisson distribution function ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Macroeconomics
The ''Journal of Macroeconomics'' is a peer-reviewed academic journal established in 1979 that covers research on a broad range of issues in monetary economics and macroeconomics, including economic growth, fluctuations, fiscal policy, and macroeconomic forecasting. The current editors are William D. Lastrapes, professor of economics at the University of Georgia; David VanHoose, professor of economics at Baylor University; and Ping Wang, professor of economics at Washington University in St. Louis Washington University in St. Louis (WashU or WUSTL) is a private research university with its main campus in St. Louis County, and Clayton, Missouri. Founded in 1853, the university is named after George Washington. Washington University is r .... References External links * Economics journals Elsevier academic journals Publications established in 1979 English-language journals {{econ-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rubin Causal Model
The Rubin causal model (RCM), also known as the Neyman–Rubin causal model, is an approach to the statistical analysis of cause and effect based on the framework of potential outcomes, named after Donald Rubin. The name "Rubin causal model" was first coined by Paul W. Holland. The potential outcomes framework was first proposed by Jerzy Neyman in his 1923 Master's thesis,Neyman, Jerzy. ''Sur les applications de la theorie des probabilites aux experiences agricoles: Essai des principes.'' Master's Thesis (1923). Excerpts reprinted in English, Statistical Science, Vol. 5, pp. 463–472. ( D. M. Dabrowska, and T. P. Speed, Translators.) though he discussed it only in the context of completely randomized experiments. Rubin extended it into a general framework for thinking about causation in both observational and experimental studies. Introduction The Rubin causal model is based on the idea of potential outcomes. For example, a person would have a particular income at age 4 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]