HOME
*





Compression Theorem
In computational complexity theory, the compression theorem is an important theorem about the complexity of computable functions. The theorem states that there exists no largest complexity class, with computable boundary, which contains all computable functions. Compression theorem Given a Gödel numbering \varphi of the computable functions and a Blum complexity measure \Phi where a complexity class for a boundary function f is defined as :\mathrm(f):= \. Then there exists a total computable function Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do ... f so that for all i :\mathrm(\varphi_i) = \mathrm(\varphi_) and :\mathrm(\varphi_i) \subsetneq \mathrm(\varphi_). References *. *. Computational complexity theory Structural complexity theory Theorems in the foundations of mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Complexity Theory
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity, i.e., the amount of resources needed to solve them, such as time and storage. Other measures of complexity are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of compu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computational Complexity
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory. Both areas are highly related, as the complexity of an algorithm is always an upper bound on the complexity of the problem solved by this algorithm. Moreover, for designing efficient algorithms, it is often fundamental to compare the complexity of a specific algorithm to the complexity of the problem to be solved. Also, in most cases, the only thing that is known about the complexity of a problem is that it is lower than the co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computable Function
Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do the job of the function, i.e. given an input of the function domain it can return the corresponding output. Computable functions are used to discuss computability without referring to any concrete model of computation such as Turing machines or register machines. Any definition, however, must make reference to some specific model of computation but all valid definitions yield the same class of functions. Particular models of computability that give rise to the set of computable functions are the Turing-computable functions and the general recursive functions. Before the precise definition of computable function, mathematicians often used the informal term ''effectively calculable''. This term has since come to be identified with the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complexity Class
In computational complexity theory, a complexity class is a set of computational problems of related resource-based complexity. The two most commonly analyzed resources are time and memory. In general, a complexity class is defined in terms of a type of computational problem, a model of computation, and a bounded resource like time or memory. In particular, most complexity classes consist of decision problems that are solvable with a Turing machine, and are differentiated by their time or space (memory) requirements. For instance, the class P is the set of decision problems solvable by a deterministic Turing machine in polynomial time. There are, however, many complexity classes defined in terms of other types of problems (e.g. counting problems and function problems) and using other models of computation (e.g. probabilistic Turing machines, interactive proof systems, Boolean circuits, and quantum computers). The study of the relationships between complexity class ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gödel Numbering
In mathematical logic, a Gödel numbering is a function that assigns to each symbol and well-formed formula of some formal language a unique natural number, called its Gödel number. The concept was developed by Kurt Gödel for the proof of his incompleteness theorems. () A Gödel numbering can be interpreted as an encoding in which a number is assigned to each symbol of a mathematical notation, after which a sequence of natural numbers can then represent a sequence of symbols. These sequences of natural numbers can again be represented by single natural numbers, facilitating their manipulation in formal theories of arithmetic. Since the publishing of Gödel's paper in 1931, the term "Gödel numbering" or "Gödel code" has been used to refer to more general assignments of natural numbers to mathematical objects. Simplified overview Gödel noted that each statement within a system can be represented by a natural number (its ''Gödel number''). The significance of this ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Blum Complexity Measure
In computational complexity theory the Blum axioms or Blum complexity axioms are axioms that specify desirable properties of complexity measures on the set of computable functions. The axioms were first defined by Manuel Blum in 1967. Importantly, Blum's speedup theorem and the Gap theorem hold for any complexity measure satisfying these axioms. The most well-known measures satisfying these axioms are those of time (i.e., running time) and space (i.e., memory usage). Definitions A Blum complexity measure is a pair (\varphi, \Phi) with \varphi a numbering of the partial computable functions \mathbf^ and a computable function :\Phi: \mathbb \to \mathbf^ which satisfies the following Blum axioms. We write \varphi_i for the ''i''-th partial computable function under the Gödel numbering \varphi, and \Phi_i for the partial computable function \Phi(i). * the domains of \varphi_i and \Phi_i are identical. * the set \ is recursive. Examples * (\varphi, \Phi) is a complexity mea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Computable Function
Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do the job of the function, i.e. given an input of the function domain it can return the corresponding output. Computable functions are used to discuss computability without referring to any concrete model of computation such as Turing machines or register machines. Any definition, however, must make reference to some specific model of computation but all valid definitions yield the same class of functions. Particular models of computability that give rise to the set of computable functions are the Turing-computable functions and the general recursive functions. Before the precise definition of computable function, mathematicians often used the informal term ''effectively calculable''. This term has since come to be identified with the com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Complexity Theory
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity, i.e., the amount of resources needed to solve them, such as time and storage. Other measures of complexity are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of compu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Structural Complexity Theory
In computational complexity theory of computer science, the structural complexity theory or simply structural complexity is the study of complexity classes, rather than computational complexity of individual problems and algorithms. It involves the research of both internal structures of various complexity classes and the relations between different complexity classes. Juris Hartmanis, "New Developments in Structural Complexity Theory" (invited lecture), Proc. 15th International Colloquium on Automata, Languages and Programming, 1988 (ICALP 88), ''Lecture Notes in Computer Science'', vol. 317 (1988), pp. 271-286. History The theory has emerged as a result of (still failing) attempts to resolve the first and still the most important question of this kind, the P = NP problem. Most of the research is done basing on the assumption of P not being equal to NP and on a more far-reaching conjecture that the polynomial time hierarchy of complexity classes is infinite. Important results ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]