HOME





Complex Hadamard Matrices
A complex Hadamard matrix is any complex N \times N matrix H satisfying two conditions: *unimodularity (the modulus of each entry is unity): , H_, = 1 \text j,k = 1,2,\dots,N *orthogonality: HH^ = NI, where \dagger denotes the Hermitian transpose of H and I is the identity matrix. The concept is a generalization of Hadamard matrices. Note that any complex Hadamard matrix H can be made into a unitary matrix by multiplying it by \frac; conversely, any unitary matrix whose entries all have modulus \frac becomes a complex Hadamard upon multiplication by \sqrt. Complex Hadamard matrices arise in the study of operator algebras and the theory of quantum computation. Real Hadamard matrices and Butson-type Hadamard matrices form particular cases of complex Hadamard matrices. Complex Hadamard matrices exist for any natural number N (compare with the real case, in which Hadamard matrices do not exist for every N and existence is not known for every permissible N). For instance the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or complex coefficie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Butson-type Hadamard Matrix
In mathematics, a complex Hadamard matrix ''H'' of size ''N'' with all its columns (rows) mutually orthogonal, belongs to the Butson-type ''H''(''q'', ''N'') if all its elements are powers of ''q''-th root of unity, :: (H_)^q = 1 \quad\text\quad j,k = 1,2,\dots,N. Existence If ''p'' is prime and N>1, then H(p,N) can exist only for N = mp with integer ''m'' and it is conjectured they exist for all such cases with p \ge 3. For p=2, the corresponding conjecture is existence for all multiples of 4. In general, the problem of finding all sets \ such that the Butson-type matrices H(q,N) exist, remains open. Examples *H(2,N) contains real Hadamard matrices of size ''N'', *H(4,N) contains Hadamard matrices composed of \pm 1, \pm i – such matrices were called by Turyn, complex Hadamard matrices. * in the limit q \to \infty one can approximate all complex Hadamard matrices A complex Hadamard matrix is any complex N \times N matrix H satisfying two conditions: *unimodularity (t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Symmetric Matrices
In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, Because equal matrices have equal dimensions, only square matrices can be symmetric. The entries of a symmetric matrix are symmetric with respect to the main diagonal. So if a_ denotes the entry in the ith row and jth column then for all indices i and j. Every square diagonal matrix is symmetric, since all off-diagonal elements are zero. Similarly in characteristic different from 2, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative. In linear algebra, a real symmetric matrix represents a self-adjoint operator represented in an orthonormal basis over a real inner product space. The corresponding object for a complex inner product space is a Hermitian matrix with complex-valued entries, which is equal to its conjugate transpose. Therefore, in linear algebra over the complex numbers, it is often assumed that a symmetric matrix re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Circulant Matrix
In linear algebra, a circulant matrix is a square matrix in which all rows are composed of the same elements and each row is rotated one element to the right relative to the preceding row. It is a particular kind of Toeplitz matrix. In numerical analysis, circulant matrices are important because they are diagonalized by a discrete Fourier transform, and hence linear equations that contain them may be quickly solved using a fast Fourier transform. They can be interpreted analytically as the integral kernel of a convolution operator on the cyclic group C_n and hence frequently appear in formal descriptions of spatially invariant linear operations. This property is also critical in modern software defined radios, which utilize Orthogonal Frequency Division Multiplexing to spread the symbols (bits) using a cyclic prefix. This enables the channel to be represented by a circulant matrix, simplifying channel equalization in the frequency domain. In cryptography, a circulant matrix ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Permutation Matrices
In mathematics, particularly in Matrix (mathematics), matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column with all other entries 0. An permutation matrix can represent a permutation of elements. Pre-matrix multiplication, multiplying an -row matrix by a permutation matrix , forming , results in permuting the rows of , while post-multiplying an -column matrix , forming , permutes the columns of . Every permutation matrix ''P'' is orthogonal matrix, orthogonal, with its invertible matrix, inverse equal to its transpose: P^=P^\mathsf. Indeed, permutation matrices can be Characterization (mathematics), characterized as the orthogonal matrices whose entries are all non-negative. The two permutation/matrix correspondences There are two natural one-to-one correspondences between permutations and permutation matrices, one of which works along the rows of the matrix, the other along its columns. Here is an exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Diagonal Matrix
In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal matrix is \left begin 3 & 0 \\ 0 & 2 \end\right/math>, while an example of a 3×3 diagonal matrix is \left begin 6 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 4 \end\right/math>. An identity matrix of any size, or any multiple of it is a diagonal matrix called a ''scalar matrix'', for example, \left begin 0.5 & 0 \\ 0 & 0.5 \end\right/math>. In geometry, a diagonal matrix may be used as a '' scaling matrix'', since matrix multiplication with it results in changing scale (size) and possibly also shape; only a scalar matrix results in uniform change in scale. Definition As stated above, a diagonal matrix is a matrix in which all off-diagonal entries are zero. That is, the matrix with columns and rows is diagonal if \forall i,j \in \, i \ne j \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number a is equal to itself (reflexive). If a = b, then b = a (symmetric). If a = b and b = c, then a = c (transitive). Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definitions A binary relation \,\si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


DFT Matrix
In applied mathematics, a DFT matrix is a ''square matrix'' as an expression of a discrete Fourier transform (DFT) as a transformation matrix, which can be applied to a signal through matrix multiplication. Definition An ''N''-point DFT is expressed as the multiplication X = W x, where x is the original input signal, W is the ''N''-by-''N'' square matrix, square DFT matrix, and X is the DFT of the signal. The square matrix ensures the transformation is invertable. The transformation matrix W can be defined as W = \left(\frac\right)_ , or equivalently: : W = \frac \begin 1&1&1&1&\cdots &1 \\ 1&\omega&\omega^2&\omega^3&\cdots&\omega^ \\ 1&\omega^2&\omega^4&\omega^6&\cdots&\omega^\\ 1&\omega^3&\omega^6&\omega^9&\cdots&\omega^\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\ 1&\omega^&\omega^&\omega^&\cdots&\omega^ \end , where \omega = e^ is a Root of unity, primitive ''N''th root of unity in which i^2=-1. We can avoid writing large exponents for \omega using the fact that for any exp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Complex Conjugate
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b are real numbers, then the complex conjugate of a + bi is a - bi. The complex conjugate of z is often denoted as \overline or z^*. In polar form, if r and \varphi are real numbers then the conjugate of r e^ is r e^. This can be shown using Euler's formula. The product of a complex number and its conjugate is a real number: a^2 + b^2 (or r^2 in polar coordinates). If a root of a univariate polynomial with real coefficients is complex, then its complex conjugate is also a root. Notation The complex conjugate of a complex number z is written as \overline z or z^*. The first notation, a vinculum, avoids confusion with the notation for the conjugate transpose of a matrix, which can be thought of as a generalization of the complex conjugate. The second is preferred in physics, where ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Hadamard Conjecture
Jacques Salomon Hadamard (; 8 December 1865 – 17 October 1963) was a French mathematician who made major contributions in number theory, complex analysis, differential geometry, and partial differential equations. Biography The son of a teacher, Amédée Hadamard, of Jewish descent, and Claire Marie Jeanne Picard, Hadamard was born in Versailles (city), Versailles, France and attended the Lycée Charlemagne and Lycée Louis-le-Grand, where his father taught. In 1884 Hadamard entered the École Normale Supérieure, having placed first in the entrance examinations both there and at the École Polytechnique. His teachers included Paul Tannery, Tannery, Hermite, Jean Gaston Darboux, Darboux, Paul Émile Appell, Appell, Édouard Goursat, Goursat, and Charles Émile Picard, Picard. He obtained his doctorate in 1892 and in the same year was awarded the for his essay on the Riemann zeta function. In 1892 Hadamard married Louise-Anna Trénel, also of Jewish descent, with whom he had ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Real Number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and in many other branches of mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers, sometimes called "the reals", is traditionally denoted by a bold , often using blackboard bold, . The adjective ''real'', used in the 17th century by René Descartes, distinguishes real numbers from imaginary numbers such as the square roots of . The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real numbers are called irrational numbers. Some irrational numbers (as well as all the rationals) a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]