Cocone
   HOME





Cocone
In category theory, a branch of mathematics, the cone of a functor is an abstract notion used to define the limit of that functor. Cones make other appearances in category theory as well. Definition Let ''F'' : ''J'' → ''C'' be a diagram in ''C''. Formally, a diagram is nothing more than a functor from ''J'' to ''C''. The change in terminology reflects the fact that we think of ''F'' as indexing a family of objects and morphisms in ''C''. The category ''J'' is thought of as an "index category". One should consider this in analogy with the concept of an indexed family of objects in set theory. The primary difference is that here we have morphisms as well. Thus, for example, when ''J'' is a discrete category, it corresponds most closely to the idea of an indexed family in set theory. Another common and more interesting example takes ''J'' to be a span. ''J'' can also be taken to be the empty category, leading to the simplest cones. Let ''N'' be an object of ''C''. A cone from ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Limit (category Theory)
In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as product (category theory), products, pullback (category theory), pullbacks and inverse limits. The duality (category theory), dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushout (category theory), pushouts and direct limits. Limits and colimits, like the strongly related notions of universal property, universal properties and adjoint functors, exist at a high level of abstraction. In order to understand them, it is helpful to first study the specific examples these concepts are meant to generalize. Definition Limits and colimits in a category (mathematics), category C are defined by means of diagrams in C. Formally, a diagram (category theory), diagram of shape J in C is a functor from J to C: :F:J\to C. The category J is thought of as an index category, and the diagram F is tho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Comma Category
In mathematics, a comma category (a special case being a slice category) is a construction in category theory. It provides another way of looking at morphisms: instead of simply relating objects of a Category (mathematics), category to one another, morphisms become objects in their own right. This notion was introduced in 1963 by William Lawvere, F. W. Lawvere (Lawvere, 1963 p. 36), although the technique did not become generally known until many years later. Several mathematical concepts can be treated as comma categories. Comma categories also guarantee the existence of some Limit (category theory), limits and colimits. The name comes from the notation originally used by Lawvere, which involved the comma punctuation mark. The name persists even though standard notation has changed, since the use of a comma as an operator is potentially confusing, and even Lawvere dislikes the uninformative term "comma category" (Lawvere, 1963 p. 13). Definition The most general comma ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Category Of Diagrams
In category theory, a branch of mathematics, a diagram is the categorical analogue of an indexed family in set theory. The primary difference is that in the categorical setting one has morphisms that also need indexing. An indexed family of sets is a collection of sets, indexed by a fixed set; equivalently, a ''function'' from a fixed index ''set'' to the class of ''sets''. A diagram is a collection of objects and morphisms, indexed by a fixed category; equivalently, a ''functor'' from a fixed index ''category'' to some ''category''. Definition Formally, a diagram of type ''J'' in a category ''C'' is a ( covariant) functor The category ''J'' is called the index category or the scheme of the diagram ''D''; the functor is sometimes called a ''J''-shaped diagram. The actual objects and morphisms in ''J'' are largely irrelevant; only the way in which they are interrelated matters. The diagram ''D'' is thought of as indexing a collection of objects and morphisms in ''C'' patterned on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE