HOME



picture info

Close-packing Of Equal Spheres
In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or Lattice (group), lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occupied by spheres – that can be achieved by a Lattice (group), lattice packing is :\frac \approx 0.74048. The same packing density can also be achieved by alternate stackings of the same close-packed planes of spheres, including structures that are aperiodic in the stacking direction. The Kepler conjecture states that this is the highest density that can be achieved by any arrangement of spheres, either regular or irregular. This conjecture was proven by Thomas Callister Hales, Thomas Hales. The highest density is so far known only for 1, 2, 3, 8, and 24 dimensions. Many crystal structures are based on a close-packing of a single kind of atom, or a close-packing of large ions with smaller ions filling the spaces between t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Close Packing Box
Close may refer to: Music * Close (Kim Wilde album), ''Close'' (Kim Wilde album), 1988 * Close (Marvin Sapp album), ''Close'' (Marvin Sapp album), 2017 * Close (Sean Bonniwell album), ''Close'' (Sean Bonniwell album), 1969 * Close (Sub Focus song), "Close" (Sub Focus song), 2014 * Close (Nick Jonas song), "Close" (Nick Jonas song), 2016 *Close (Rae Sremmurd, Swae Lee and Slim Jxmmi song), "Close" (Rae Sremmurd song), 2018 * Close (Jade Eagleson song), "Close" (Jade Eagleson song), 2020 * "Close (to the Edit)", a 1984 song by Art of Noise * "Close", song by Aaron Lines from ''Living Out Loud (album), Living Out Loud'' * "Close", song by AB6IX from ''Mo' Complete: Have A Dream'' * "Close", song by Drumsound & Bassline Smith from ''Wall of Sound'' * "Close", song by Rascal Flatts from ''Unstoppable (Rascal Flatts album), Unstoppable'' * "Close", song by Soul Asylum from ''Candy from a Stranger'' * "Close", song by Westlife from ''Coast to Coast (Westlife album), Coast to Coast'' * "Clo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetry
Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant under some Transformation (function), transformations, such as Translation (geometry), translation, Reflection (mathematics), reflection, Rotation (mathematics), rotation, or Scaling (geometry), scaling. Although these two meanings of the word can sometimes be told apart, they are intricately related, and hence are discussed together in this article. Mathematical symmetry may be observed with respect to the passage of time; as a space, spatial relationship; through geometric transformations; through other kinds of functional transformations; and as an aspect of abstract objects, including scientific model, theoretic models, language, and music. This article describes symmetry from three perspectives: in mathematics, including geometry, the m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cubic Closest Packing (CCP) And Hexagonal Closet Packing (HCP)
Cubic may refer to: Science and mathematics * Cube (algebra), "cubic" measurement * Cube, a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex ** Cubic crystal system, a crystal system where the unit cell is in the shape of a cube * Cubic function, a polynomial function of degree three * Cubic equation, a polynomial equation (reducible to ''ax''3 + ''bx''2 + ''cx'' + ''d'' = 0) * Cubic form, a homogeneous polynomial of degree 3 * Cubic graph (mathematics - graph theory), a graph where all vertices have degree 3 * Cubic plane curve (mathematics), a plane algebraic curve ''C'' defined by a cubic equation * Cubic reciprocity (mathematics - number theory), a theorem analogous to quadratic reciprocity * Cubic surface, an algebraic surface in three-dimensional space * Cubic zirconia, in geology, a mineral that is widely synthesized for use as a diamond simulacra * CUBIC, a histology method Computing * Cubic IDE, a modular dev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atomic Packing Factor
In crystallography, atomic packing factor (APF), packing efficiency, or packing fraction is the Packing density, fraction of volume in a crystal structure that is occupied by constituent particles. It is a dimensionless quantity and always less than unity. In atomic systems, by convention, the APF is determined by assuming that atoms are rigid spheres. The radius of the spheres is taken to be the maximum value such that the atoms do not overlap. For one-component crystals (those that contain only one type of particle), the packing fraction is represented mathematically by :\mathrm = \frac where ''N''particle is the number of particles in the unit cell, ''V''particle is the volume of each particle, and ''V''unit cell is the volume occupied by the unit cell. It can be proven mathematically that for one-component structures, the most dense arrangement of atoms has an APF of about 0.74 (see Kepler conjecture), obtained by the close-packing of equal spheres, close-packed structures. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coordination Number
In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central ion/molecule/atom is called a ligand. This number is determined somewhat differently for molecules than for crystals. For molecules and polyatomic ions the coordination number of an atom is determined by simply counting the other atoms to which it is bonded (by either single or multiple bonds). For example, [Cr(NH3)2Cl2Br2]− has Cr3+ as its central cation, which has a coordination number of 6 and is described as ''hexacoordinate''. The common coordination numbers are 4, 6 and 8. Molecules, polyatomic ions and coordination complexes In chemistry, coordination number, defined originally in 1893 by Alfred Werner, is the total number of neighbors of a central atom in a molecule or ion. The concept is most commonly applied to coordination ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


William Barlow (geologist)
William Barlow Royal Society, FRS (8 August 1845 – 28 February 1934) was an English amateur geologist specialising in crystallography. He was born in Islington, in London, England. His father became wealthy as a speculative builder as well as a building surveyor, allowing William to have a private education. After his father died in 1875, William and his brother inherited this fortune, allowing him to pursue his interest in crystallography without the need to labour for a living. William examined the forms of crystalline structures and deduced that there were only 230 forms of symmetrical crystal arrangements, known as space groups. His results were published in 1894, after they had been independently announced by Evgraf Fedorov and Arthur Schönflies, although his approach did display some novelty. His structural models of simple compounds such as Sodium chloride, NaCl and Caesium chloride, CsCl were later confirmed using X-ray crystallography. He served as the president ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Octahedron
In geometry, an octahedron (: octahedra or octahedrons) is any polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Many types of irregular octahedra also exist, including both convex set, convex and non-convex shapes. Combinatorially equivalent to the regular octahedron The following polyhedra are combinatorially equivalent to the regular octahedron. They all have six vertices, eight triangular faces, and twelve edges that correspond one-for-one with the features of it: * Triangular antiprisms: Two faces are equilateral, lie on parallel planes, and have a common axis of symmetry. The other six triangles are isosceles. The regular octahedron is a special case in which the six lateral triangles are also equilateral. * Tetragonal bipyramids, in which at least one of the equatorial quadrilaterals lies on a plane. The regular octahedron is a special case in which all thr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diophantine Equation
''Diophantine'' means pertaining to the ancient Greek mathematician Diophantus. A number of concepts bear this name: *Diophantine approximation In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria. The first problem was to know how well a real number can be approximated ... * Diophantine equation * Diophantine quintuple * Diophantine set {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Édouard Lucas
__NOTOC__ François Édouard Anatole Lucas (; 4 April 1842 – 3 October 1891) was a French mathematician. Lucas is known for his study of the Fibonacci sequence. The related Lucas sequences and Lucas numbers are named after him. Biography Lucas was born in Amiens and educated at the École Normale Supérieure. He worked in the Paris Observatory and later became a professor of mathematics at the Lycée Saint Louis and the Lycée Charlemagne in Paris. Lucas served as an artillery officer in the French Army during the Franco-Prussian War of 1870–1871. In 1875, Lucas posed a challenge to prove that the only solution of the Diophantine equation :\sum_^ n^2 = M^2\; with ''N'' > 1 is when ''N'' = 24 and ''M'' = 70. This is known as the cannonball problem, since it can be visualized as the problem of taking a square arrangement of cannonballs on the ground and building a square pyramid out of them. It was not until 1918 that a proof (using elliptic functions) was found for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cannonball Problem
In the mathematics of figurate numbers, the cannonball problem asks which numbers are both square and square pyramidal. The problem can be stated as: given a square arrangement of cannonballs, for what size squares can these cannonballs also be arranged into a square pyramid? Equivalently, which squares can be represented as the sum of consecutive squares, starting from 1? Formulation as a Diophantine equation When cannonballs are stacked within a square frame, the number of balls is a square pyramidal number; Thomas Harriot gave a formula for this number around 1587, answering a question posed to him by Sir Walter Raleigh Sir Walter Raleigh (; – 29 October 1618) was an English statesman, soldier, writer and explorer. One of the most notable figures of the Elizabethan era, he played a leading part in English colonisation of North America, suppressed rebell ... on their expedition to America. Édouard Lucas formulated the cannonball problem as a Diophantine equation : ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pyramid Of Snowballs Large
A pyramid () is a structure whose visible surfaces are triangular in broad outline and converge toward the top, making the appearance roughly a pyramid in the geometric sense. The base of a pyramid can be of any polygon shape, such as triangular or quadrilateral, and its surface-lines either filled or stepped. A pyramid has the majority of its mass closer to the ground with less mass towards the pyramidion at the apex. This is due to the gradual decrease in the cross-sectional area along the vertical axis with increasing elevation. This offers a weight distribution that allowed early civilizations to create monumental structures.Ancient civilizations in many parts of the world pioneered the building of pyramids. The largest pyramid by volume is the Mesoamerican Great Pyramid of Cholula, in the Mexican state of Puebla. For millennia, the largest structures on Earth were pyramids—first the Red Pyramid in the Dashur Necropolis and then the Great Pyramid of Khufu, both in Eg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Walter Raleigh
Sir Walter Raleigh (; – 29 October 1618) was an English statesman, soldier, writer and explorer. One of the most notable figures of the Elizabethan era, he played a leading part in English colonisation of North America, suppressed rebellion in Ireland, helped defend England against the Spanish Armada and held political positions under Elizabeth I. Raleigh was born to a landed gentry family of Protestant faith in Devon, the son of Walter Raleigh and Catherine Champernowne. He was the younger half-brother of Sir Humphrey Gilbert and a cousin of Sir Richard Grenville. Little is known of his early life, though in his late teens he spent some time in France taking part in the religious civil wars. In his 20s he took part in the suppression of rebellion in the colonisation of Ireland; he also participated in the siege of Smerwick. Later, he became a landlord of property in Ireland and mayor of Youghal in east Munster, where his house still stands in Myrtle Grove. He rose ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]