HOME
*



picture info

Clique Complex
Clique complexes, independence complexes, flag complexes, Whitney complexes and conformal hypergraphs are closely related mathematical objects in graph theory and geometric topology that each describe the cliques (complete subgraphs) of an undirected graph. Clique complex The clique complex of an undirected graph is an abstract simplicial complex (that is, a family of finite sets closed under the operation of taking subsets), formed by the sets of vertices in the cliques of . Any subset of a clique is itself a clique, so this family of sets meets the requirement of an abstract simplicial complex that every subset of a set in the family should also be in the family. The clique complex can also be viewed as a topological space in which each clique of vertices is represented by a simplex of dimension . The 1-skeleton of (also known as the ''underlying graph'' of the complex) is an undirected graph with a vertex for every 1-element set in the family and an edge for every 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




VR Complex
VR may refer to: Arts, entertainment and education * Virtual reality, a computer technology that simulates an environment with which a user may interact as if it was actually there * ''Virtua Racing'', a 1992 arcade racing game by Sega * Vocational rehabilitation * Spectre VR, an enhanced version of ''Spectre'' * ''VR.5'', an American science fiction television series in 1995 * ''VR Troopers'', an American action television show from 1994 to 1996 Businesses * VR (company), a Finnish railway company, formerly known as Valtion rautatiet ''(State Railways)'' * Valdosta Railway, in the US state of Georgia * Victorian Railways, in the Australian state of Victoria * Viktor & Rolf, an Amsterdam-based fashion house * German Cooperative Financial Group (''Volksbanken und Raiffeisenbanken'') * Cape Verde Airlines (IATA airline code) Government and military * Vetenskapsrådet, the Swedish Research Council * Volunteer Reserves (United Kingdom) * Fleet Logistics Support, a squadron of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mikhail Leonidovich Gromov
Mikhael Leonidovich Gromov (also Mikhail Gromov, Michael Gromov or Misha Gromov; russian: link=no, Михаи́л Леони́дович Гро́мов; born 23 December 1943) is a Russian-French mathematician known for his work in geometry, analysis and group theory. He is a permanent member of IHÉS in France and a professor of mathematics at New York University. Gromov has won several prizes, including the Abel Prize in 2009 "for his revolutionary contributions to geometry". Biography Mikhail Gromov was born on 23 December 1943 in Boksitogorsk, Soviet Union. His Russian father Leonid Gromov and his Jewish mother Lea Rabinovitz were pathologists. His mother was the cousin of World Chess Champion Mikhail Botvinnik, as well as of the mathematician Isaak Moiseevich Rabinovich. Gromov was born during World War II, and his mother, who worked as a medical doctor in the Soviet Army, had to leave the front line in order to give birth to him. When Gromov was nine years old, his mother ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flag (geometry)
In (polyhedral) geometry, a flag is a sequence of Face (geometry), faces of a Abstract polytope, polytope, each contained in the next, with exactly one face from each dimension. More formally, a flag of an -polytope is a set such that and there is precisely one in for each , Since, however, the minimal face and the maximal face must be in every flag, they are often omitted from the list of faces, as a shorthand. These latter two are called improper faces. For example, a flag of a polyhedron comprises one Vertex (geometry), vertex, one Edge (geometry), edge incident to that vertex, and one polygonal face incident to both, plus the two improper faces. A polytope may be regarded as regular if, and only if, its symmetry group is transitive group action, transitive on its flags. This definition excludes Chirality (mathematics), chiral polytopes. Incidence geometry In the more abstract setting of incidence geometry, which is a set having a symmetric and reflexive Relatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CW Complex
A CW complex (also called cellular complex or cell complex) is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead (open access) to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation (often with a much smaller complex). The ''C'' stands for "closure-finite", and the ''W'' for "weak" topology. Definition CW complex A CW complex is constructed by taking the union of a sequence of topological spaces\emptyset = X_ \subset X_0 \subset X_1 \subset \cdotssuch that each X_k is obtained from X_ by gluing copies of k-cells (e^k_\alpha)_\alpha, each homeomorphic to D^k, to X_ by continuous gluing maps g^k_\alpha: \partial e^k_\alpha \to X_. The maps are also called attaching maps. Each X_k is called the k-skeleton of the complex. The topology of X = \cup_ X_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Barycentric Subdivision
In mathematics, the barycentric subdivision is a standard way to subdivide a given simplex into smaller ones. Its extension on simplicial complexes is a canonical method to refine them. Therefore, the barycentric subdivision is an important tool in algebraic topology. Motivation The barycentric subdivision is an operation on simplicial complexes. In algebraic topology it is sometimes useful to replace the original spaces with simplicial complexes via triangulations: The substitution allows to assign combinatorial invariants as the Euler characteristic to the spaces. One can ask if there is an analogous way to replace the continuous functions defined on the topological spaces by functions that are linear on the simplices and which are homotopic to the original maps (see also simplicial approximation). In general, such an assignment requires a refinement of the given complex, meaning, one replaces bigger simplices by a union of smaller simplices. A standard way to effectuate such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperedge
This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges. Symbols A B C D E F G H I K L M N O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hypergraph
In mathematics, a hypergraph is a generalization of a graph in which an edge can join any number of vertices. In contrast, in an ordinary graph, an edge connects exactly two vertices. Formally, an undirected hypergraph H is a pair H = (X,E) where X is a set of elements called ''nodes'' or ''vertices'', and E is a set of non-empty subsets of X called ''hyperedges'' or ''edges''. Therefore, E is a subset of \mathcal(X) \setminus\, where \mathcal(X) is the power set of X. The size of the vertex set is called the ''order of the hypergraph'', and the size of edges set is the ''size of the hypergraph''. A directed hypergraph differs in that its hyperedges are not sets, but ordered pairs of subsets of X, with each pair's first and second entries constituting the tail and head of the hyperedge respectively. While graph edges connect only 2 nodes, hyperedges connect an arbitrary number of nodes. However, it is often desirable to study hypergraphs where all hyperedges have the same card ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Primal Graph (hypergraphs)
In mathematics, a hypergraph is a generalization of a graph in which an edge can join any number of vertices. In contrast, in an ordinary graph, an edge connects exactly two vertices. Formally, an undirected hypergraph H is a pair H = (X,E) where X is a set of elements called ''nodes'' or ''vertices'', and E is a set of non-empty subsets of X called ''hyperedges'' or ''edges''. Therefore, E is a subset of \mathcal(X) \setminus\, where \mathcal(X) is the power set of X. The size of the vertex set is called the ''order of the hypergraph'', and the size of edges set is the ''size of the hypergraph''. A directed hypergraph differs in that its hyperedges are not sets, but ordered pairs of subsets of X, with each pair's first and second entries constituting the tail and head of the hyperedge respectively. While graph edges connect only 2 nodes, hyperedges connect an arbitrary number of nodes. However, it is often desirable to study hypergraphs where all hyperedges have the same card ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Induced Subgraph
In the mathematical field of graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges (from the original graph) connecting pairs of vertices in that subset. Definition Formally, let G=(V,E) be any graph, and let S\subset V be any subset of vertices of . Then the induced subgraph G is the graph whose vertex set is S and whose edge set consists of all of the edges in E that have both endpoints in S . That is, for any two vertices u,v\in S , u and v are adjacent in G if and only if they are adjacent in G . The same definition works for undirected graphs, directed graphs, and even multigraphs. The induced subgraph G may also be called the subgraph induced in G by S , or (if context makes the choice of G unambiguous) the induced subgraph of S . Examples Important types of induced subgraphs include the following. *Induced paths are induced subgraphs that are paths. The shortest path between ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Neighbourhood (graph Theory)
In graph theory, an adjacent vertex of a vertex in a graph is a vertex that is connected to by an edge. The neighbourhood of a vertex in a graph is the subgraph of induced by all vertices adjacent to , i.e., the graph composed of the vertices adjacent to and all edges connecting vertices adjacent to . The neighbourhood is often denoted or (when the graph is unambiguous) . The same neighbourhood notation may also be used to refer to sets of adjacent vertices rather than the corresponding induced subgraphs. The neighbourhood described above does not include itself, and is more specifically the open neighbourhood of ; it is also possible to define a neighbourhood in which itself is included, called the closed neighbourhood and denoted by . When stated without any qualification, a neighbourhood is assumed to be open. Neighbourhoods may be used to represent graphs in computer algorithms, via the adjacency list and adjacency matrix representations. Neighbourhoods are also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homeomorphism
In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word ''homeomorphism'' comes from the Greek words '' ὅμοιος'' (''homoios'') = similar or same and '' μορφή'' (''morphē'') = shape or form, introduced to mathematics by Henri Poincaré in 1895. Very roughly speaking, a topological space is a geometric object, and the homeomorphism is a continuous stretching and bending of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, this desc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Embedding
In topological graph theory, an embedding (also spelled imbedding) of a Graph (discrete mathematics), graph G on a surface (mathematics), surface \Sigma is a representation of G on \Sigma in which points of \Sigma are associated with graph theory, vertices and simple arcs (Homeomorphism, homeomorphic images of [0,1]) are associated with graph theory, edges in such a way that: * the endpoints of the arc associated with an edge e are the points associated with the end vertices of e, * no arcs include points associated with other vertices, * two arcs never intersect at a point which is interior to either of the arcs. Here a surface is a compact space, compact, connected space, connected 2-manifold. Informally, an embedding of a graph into a surface is a drawing of the graph on the surface in such a way that its edges may intersect only at their endpoints. It is well known that any finite graph can be embedded in 3-dimensional Euclidean space \mathbb^3.. A planar graph is one that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]