HOME
*





Category Of Finite Sets
In the mathematical field of category theory, FinSet is the category whose objects are all finite sets and whose morphisms are all functions between them. FinOrd is the category whose objects are all finite ordinal numbers and whose morphisms are all functions between them. Properties FinSet is a full subcategory of Set, the category whose objects are all sets and whose morphisms are all functions. Like Set, FinSet is a large category. FinOrd is a full subcategory of FinSet as by the standard definition, suggested by John von Neumann, each ordinal is the well-ordered set of all smaller ordinals. Unlike Set and FinSet, FinOrd is a small category. FinOrd is a skeleton of FinSet. Therefore, FinSet and FinOrd are equivalent categories. Topoi Like Set, FinSet and FinOrd are topoi. As in Set, in FinSet the categorical product of two objects ''A'' and ''B'' is given by the cartesian product , the categorical sum is given by the disjoint union , and the exponential object ''B''''A' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cartesian Product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\times B = \. A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form . One can similarly define the Cartesian product of ''n'' sets, also known as an ''n''-fold Cartesian product, which can be represented by an ''n''-dimensional array, where each element is an ''n''-tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product. Examples A deck of cards An ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Natural Number Object
In category theory, a natural numbers object (NNO) is an object endowed with a recursive structure similar to natural numbers. More precisely, in a category E with a terminal object 1, an NNO ''N'' is given by: # a global element ''z'' : 1 → ''N'', and # an arrow ''s'' : ''N'' → ''N'', such that for any object ''A'' of E, global element ''q'' : 1 → ''A'', and arrow ''f'' : ''A'' → ''A'', there exists a unique arrow ''u'' : ''N'' → ''A'' such that: # ''u'' ∘ ''z'' = ''q'', and # ''u'' ∘ ''s'' = ''f'' ∘ ''u''. In other words, the triangle and square in the following diagram commute. The pair (''q'', ''f'') is sometimes called the ''recursion data'' for ''u'', given in the form of a recursive definition: # ⊢ ''u'' (''z'') = ''q'' # ''y'' ∈E ''N'' ⊢ ''u'' (''s'' ''y'') = ''f'' (''u'' (''y'')) The above definition is the universal property of NNOs, meaning they are defined up to canonical isomorphism. If the arrow ''u'' as defined above merely has to exist, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lawvere Theory
In category theory, a Lawvere theory (named after United States, American mathematician William Lawvere) is a category (mathematics), category that can be considered a categorical counterpart of the notion of an equational theory. Definition Let \aleph_0 be a skeleton (category_theory), skeleton of the category FinSet of finite sets and function (mathematics), functions. Formally, a Lawvere theory consists of a small category ''L'' with (strictly associativity, associative) finite product (category theory), products and a strict identity-on-objects functor (category theory), functor I:\aleph_0^\text\rightarrow L preserving finite products. A model of a Lawvere theory in a category ''C'' with finite products is a finite-product preserving functor . A morphism of models where ''M'' and ''N'' are models of ''L'' is a natural transformation of functors. Category of Lawvere theories A map between Lawvere theories (''L'', ''I'') and (''L''′, ''I''′) is a finite-produc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


General Set Theory
General set theory (GST) is George Boolos's (1998) name for a fragment of the axiomatic set theory Z. GST is sufficient for all mathematics not requiring infinite sets, and is the weakest known set theory whose theorems include the Peano axioms. Ontology The ontology of GST is identical to that of ZFC, and hence is thoroughly canonical. GST features a single primitive ontological notion, that of set, and a single ontological assumption, namely that all individuals in the universe of discourse (hence all mathematical objects) are sets. There is a single primitive binary relation, set membership; that set ''a'' is a member of set ''b'' is written ''a ∈ b'' (usually read "''a'' is an element of ''b''"). Axioms The symbolic axioms below are from Boolos (1998: 196), and govern how sets behave and interact. As with Z, the background logic for GST is first order logic with identity. Indeed, GST is the fragment of Z obtained by omitting the axioms Union, Power Set, Elementary Se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




PRO (category Theory)
In category theory, a branch of mathematics, a PROP is a symmetric strict monoidal category whose objects are the natural numbers ''n'' identified with the finite sets \ and whose tensor product is given on objects by the addition on numbers. Because of “symmetric”, for each ''n'', the symmetric group on ''n'' letters is given as a subgroup of the automorphism group of ''n''. The name PROP is an abbreviation of "PROduct and Permutation category". The notion was introduced by Adams and MacLane; the topological version of it was later given by Boardman and Vogt. Following them, J. P. May then introduced the notion of “operad”, a particular kind of PROP. There are the following inclusions of full subcategories: pg 45 :\mathsf \subset \tfrac\mathsf \subset \mathsf where the first category is the category of (symmetric) operads. Examples and variants An important ''elementary'' class of PROPs are the sets \mathcal^ of ''all'' matrices (regardless of number of rows and colum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subobject Classifier
In category theory, a subobject classifier is a special object Ω of a category such that, intuitively, the subobjects of any object ''X'' in the category correspond to the morphisms from ''X'' to Ω. In typical examples, that morphism assigns "true" to the elements of the subobject and "false" to the other elements of ''X.'' Therefore, a subobject classifier is also known as a "truth value object" and the concept is widely used in the categorical description of logic. Note however that subobject classifiers are often much more complicated than the simple binary logic truth values . Introductory example As an example, the set Ω = is a subobject classifier in the category of sets and functions: to every subset ''A'' of ''S'' defined by the inclusion function '' j '' : ''A'' → ''S'' we can assign the function ''χA'' from ''S'' to Ω that maps precisely the elements of ''A'' to 1 (see characteristic function). Every function from ''S'' to Ω arises in this fashion from prec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordinal Exponentiation
In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations. Addition The union of two disjoint well-ordered sets ''S'' and ''T'' can be well-ordered. The order-type of that union is the ordinal that results from adding the order-types of ''S'' and ''T''. If two well-ordered sets are not already disjoint, then they can be replaced by order-isomorphic disjoint sets, e.g. replace ''S'' by × ''S'' and ''T'' by × ''T''. This way, the well-ordered set ''S'' is written "to the left" of the well-ordere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordinal Addition
In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations. Addition The union of two disjoint well-ordered sets ''S'' and ''T'' can be well-ordered. The order-type of that union is the ordinal that results from adding the order-types of ''S'' and ''T''. If two well-ordered sets are not already disjoint, then they can be replaced by order-isomorphic disjoint sets, e.g. replace ''S'' by × ''S'' and ''T'' by × ''T''. This way, the well-ordered set ''S'' is written "to the left" of the well-ordered ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Product Of Ordinals
In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations. Addition The union of two disjoint well-ordered sets ''S'' and ''T'' can be well-ordered. The order-type of that union is the ordinal that results from adding the order-types of ''S'' and ''T''. If two well-ordered sets are not already disjoint, then they can be replaced by order-isomorphic disjoint sets, e.g. replace ''S'' by × ''S'' and ''T'' by × ''T''. This way, the well-ordered set ''S'' is written "to the left" of the well-ordered ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Codomain
In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set in the notation . The term range is sometimes ambiguously used to refer to either the codomain or image of a function. A codomain is part of a function if is defined as a triple where is called the ''domain'' of , its ''codomain'', and its ''graph''. The set of all elements of the form , where ranges over the elements of the domain , is called the ''image'' of . The image of a function is a subset of its codomain so it might not coincide with it. Namely, a function that is not surjective has elements in its codomain for which the equation does not have a solution. A codomain is not part of a function if is defined as just a graph. For example in set theory it is desirable to permit the domain of a function to be a proper class , in which case there is formally no such thing as a triple . With such a defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Domain Of A Function
In mathematics, the domain of a function is the set of inputs accepted by the function. It is sometimes denoted by \operatorname(f) or \operatornamef, where is the function. More precisely, given a function f\colon X\to Y, the domain of is . Note that in modern mathematical language, the domain is part of the definition of a function rather than a property of it. In the special case that and are both subsets of \R, the function can be graphed in the Cartesian coordinate system. In this case, the domain is represented on the -axis of the graph, as the projection of the graph of the function onto the -axis. For a function f\colon X\to Y, the set is called the codomain, and the set of values attained by the function (which is a subset of ) is called its range or image. Any function can be restricted to a subset of its domain. The restriction of f \colon X \to Y to A, where A\subseteq X, is written as \left. f \_A \colon A \to Y. Natural domain If a real function is giv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]