Canonical
The adjective canonical is applied in many contexts to mean 'according to the canon' the standard, rule or primary source that is accepted as authoritative for the body of knowledge or literature in that context. In mathematics, ''canonical example'' is often used to mean 'archetype'. Science and technology * Canonical form, a natural unique representation of an object, or a preferred notation for some object Mathematics * * Canonical coordinates, sets of coordinates that can be used to describe a physical system at any given point in time * Canonical map, a morphism that is uniquely defined by its main property * Canonical polyhedron, a polyhedron whose edges are all tangent to a common sphere, whose center is the average of its vertices * Canonical ring, a graded ring associated to an algebraic variety * Canonical injection, in set theory * Canonical representative, in set theory a standard member of each element of a set partition Differential geometry * Canonical one-f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canonical Transformation
In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates that preserves the form of Hamilton's equations. This is sometimes known as ''form invariance''. Although Hamilton's equations are preserved, it need not preserve the explicit form of the Hamiltonian itself. Canonical transformations are useful in their own right, and also form the basis for the Hamilton–Jacobi equations (a useful method for calculating conserved quantities) and Liouville's theorem (itself the basis for classical statistical mechanics). Since Lagrangian mechanics is based on generalized coordinates, transformations of the coordinates do not affect the form of Lagrange's equations and, hence, do not affect the form of Hamilton's equations if the momentum is simultaneously changed by a Legendre transformation into P_i = \frac\ , where \left\ are the new co‑ordinates, grouped in canonical conjugate pairs of momenta P_i and corresponding positions Q_i, for i = 1, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Microcanonical Ensemble
In statistical mechanics, the microcanonical ensemble is a statistical ensemble that represents the possible states of a mechanical system whose total energy is exactly specified. The system is assumed to be isolated in the sense that it cannot exchange energy or particles with its environment, so that (by conservation of energy) the energy of the system does not change with time. The primary macroscopic variables of the microcanonical ensemble are the total number of particles in the system (symbol: ), the system's volume (symbol: ), as well as the total energy in the system (symbol: ). Each of these is assumed to be constant in the ensemble. For this reason, the microcanonical ensemble is sometimes called the ensemble. In simple terms, the microcanonical ensemble is defined by assigning an equal probability to every microstate whose energy falls within a range centered at . All other microstates are given a probability of zero. Since the probabilities must add up to 1, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canonical Form
In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and allows it to be identified in a unique way. The distinction between "canonical" and "normal" forms varies from subfield to subfield. In most fields, a canonical form specifies a ''unique'' representation for every object, while a normal form simply specifies its form, without the requirement of uniqueness. The canonical form of a positive integer in decimal representation is a finite sequence of digits that does not begin with zero. More generally, for a class of objects on which an equivalence relation is defined, a canonical form consists in the choice of a specific object in each class. For example: *Jordan normal form is a canonical form for matrix similarity. *The row echelon form is a canonical form, when one considers as equ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Grand Canonical Ensemble
In statistical mechanics, the grand canonical ensemble (also known as the macrocanonical ensemble) is the statistical ensemble that is used to represent the possible states of a mechanical system of particles that are in thermodynamic equilibrium (thermal and chemical) with a reservoir. The system is said to be open in the sense that the system can exchange energy and particles with a reservoir, so that various possible states of the system can differ in both their total energy and total number of particles. The system's volume, shape, and other external coordinates are kept the same in all possible states of the system. The thermodynamic variables of the grand canonical ensemble are chemical potential (symbol: ) and absolute temperature (symbol: . The ensemble is also dependent on mechanical variables such as volume (symbol: , which influence the nature of the system's internal states. This ensemble is therefore sometimes called the ensemble, as each of these three quantitie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canonical Ensemble
In statistical mechanics, a canonical ensemble is the statistical ensemble that represents the possible states of a mechanical system in thermal equilibrium with a heat bath at a fixed temperature. The system can exchange energy with the heat bath, so that the states of the system will differ in total energy. The principal thermodynamic variable of the canonical ensemble, determining the probability distribution of states, is the absolute temperature (symbol: ). The ensemble typically also depends on mechanical variables such as the number of particles in the system (symbol: ) and the system's volume (symbol: ), each of which influence the nature of the system's internal states. An ensemble with these three parameters, which are assumed constant for the ensemble to be considered canonical, is sometimes called the ensemble. The canonical ensemble assigns a probability to each distinct microstate given by the following exponential: :P = e^, where is the total energy of t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canonical Link Element
A canonical link element is an HTML element that helps webmasters prevent duplicate content issues in search engine optimization by specifying the " canonical" or "preferred" version of a web page. It is described in RFC 6596, which went live in April 2012. Purpose A major problem for search engines is to determine the original source for documents that are available on multiple URLs. Content duplication can happen in many ways, including: * Duplication due to GET-parameters * Duplication with multiple URLs due to CMS * Duplication due to accessibility on different hosts/protocols * Duplication due to print versions of websites Duplicate content issues occur when the same content is accessible from multiple URLs. For example, would be considered by search engines to be an entirely different page from , even though both URLs may reference the same content. In February 2009, Google, Yahoo and Microsoft announced support for the canonical link element, which can be inse ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canonical Quantum Gravity
In physics, canonical quantum gravity is an attempt to quantize the canonical formulation of general relativity (or canonical gravity). It is a Hamiltonian formulation of Einstein's general theory of relativity. The basic theory was outlined by Bryce DeWitt in a seminal 1967 paper, and based on earlier work by Peter G. Bergmann using the so-called canonical quantization techniques for constrained Hamiltonian systems invented by Paul Dirac. Dirac's approach allows the quantization of systems that include gauge symmetries using Hamiltonian techniques in a fixed gauge choice. Newer approaches based in part on the work of DeWitt and Dirac include the Hartle–Hawking state, Regge calculus, the Wheeler–DeWitt equation and loop quantum gravity. Canonical quantization In the Hamiltonian formulation of ordinary classical mechanics the Poisson bracket is an important concept. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canonical Morphism
The adjective canonical is applied in many contexts to mean 'according to the canon' the standard, rule or primary source that is accepted as authoritative for the body of knowledge or literature in that context. In mathematics, ''canonical example'' is often used to mean 'archetype'. Science and technology * Canonical form, a natural unique representation of an object, or a preferred notation for some object Mathematics * * Canonical coordinates, sets of coordinates that can be used to describe a physical system at any given point in time * Canonical map, a morphism that is uniquely defined by its main property * Canonical polyhedron, a polyhedron whose edges are all tangent to a common sphere, whose center is the average of its vertices * Canonical ring, a graded ring associated to an algebraic variety * Canonical injection, in set theory * Canonical representative, in set theory a standard member of each element of a set partition Differential geometry * Canonical one-form, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canonical Stress–energy Tensor
The adjective canonical is applied in many contexts to mean 'according to the canon' the standard, rule or primary source that is accepted as authoritative for the body of knowledge or literature in that context. In mathematics, ''canonical example'' is often used to mean 'archetype'. Science and technology * Canonical form, a natural unique representation of an object, or a preferred notation for some object Mathematics * * Canonical coordinates, sets of coordinates that can be used to describe a physical system at any given point in time * Canonical map, a morphism that is uniquely defined by its main property * Canonical polyhedron, a polyhedron whose edges are all tangent to a common sphere, whose center is the average of its vertices * Canonical ring, a graded ring associated to an algebraic variety * Canonical injection, in set theory * Canonical representative, in set theory a standard member of each element of a set partition Differential geometry * Canonical one-f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canonical Huffman Code
In computer science and information theory, a canonical Huffman code is a particular type of Huffman code with unique properties which allow it to be described in a very compact manner. Rather than storing the structure of the code tree explicitly, canonical Huffman codes are ordered in such a way that it suffices to only store the lengths of the codewords, which reduces the overhead of the codebook. Motivation Data compressors generally work in one of two ways. Either the decompressor can infer what codebook the compressor has used from previous context, or the compressor must tell the decompressor what the codebook is. Since a canonical Huffman codebook can be stored especially efficiently, most compressors start by generating a "normal" Huffman codebook, and then convert it to canonical Huffman before using it. In order for a symbol code scheme such as the Huffman code to be decompressed, the same model that the encoding algorithm used to compress the source data must be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canonical Model
A canonical model is a design pattern used to communicate between different data formats. Essentially: create a data model which is a superset of all the others ("canonical"), and create a "translator" module or layer to/from which all existing modules exchange data with other modules. The canonical model acts as a middleman. Each model now only needs to know how to communicate with the canonical model and doesn't need to know the implementation details of the other modules. Details A form of enterprise application integration, it is intended to reduce costs and standardize on agreed data definitions associated with integrating business systems. A canonical model is any model that is canonical in nature, meaning a model that is in the simplest form possible based on a standard enterprise application integration (EAI) solution. Most organizations also adopt a set of standards for message structure and content (message payload). The desire for consistent message payload resul ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canonical Symplectic Form
In mathematics, the tautological one-form is a special 1-form defined on the cotangent bundle T^Q of a manifold Q. In physics, it is used to create a correspondence between the velocity of a point in a mechanical system and its momentum, thus providing a bridge between Lagrangian mechanics and Hamiltonian mechanics (on the manifold Q). The exterior derivative of this form defines a symplectic form giving T^Q the structure of a symplectic manifold. The tautological one-form plays an important role in relating the formalism of Hamiltonian mechanics and Lagrangian mechanics. The tautological one-form is sometimes also called the Liouville one-form, the Poincaré one-form, the canonical one-form, or the symplectic potential. A similar object is the canonical vector field on the tangent bundle. Definition in coordinates To define the tautological one-form, select a coordinate chart U on T^*Q and a canonical coordinate system on U. Pick an arbitrary point m \in T^*Q. By ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |